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MODULE-I
INTRODUCTION

A control system manages commands, directs or regulates the behavior of other devices or
systems using control loops. It can range from a single home heating controller usinga
thermostat controlling a domestic boiler to large Industrial control systems which are used for
controlling processes or machines. A control system is a system, which provides the desired
response by controlling the output. The following figure shows the simple block diagram of a

control system.
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>

Control
System

Examples - Traffic lights control system, washing machine

Traffic lights control system is an example of control system. Here, a sequence of input signal is
applied to this control system and the output is one of the three lights that will be on for some
duration of time. During this time, the other two lights will be off. Based on the traffic study at
a particular junction, the on and off times of the lights can be determined. Accordingly, the input

signal controls the output. So, the traffic lights control system operates on time basis.

Classification of Control Systems

Based on some parameters, we can classify the control systems into the following ways.

Continuous time and Discrete-time Control Systems

¢ Control Systems can be classified as continuous time control systems and discrete time

control systems based on the type of the signal used.

¢ In continuous time control systems, all the signals are continuous in time. But,

in discrete time control systems, there exists one or more discrete time signals.

SISO and MIMO Control Systems
e Control Systems can be classified as SISO control systems and MIMO control systems

based on the number of inputs and outputs present.



https://en.wikipedia.org/wiki/Control_loop
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https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Process_(engineering)
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e SISO (Single Input and Single Output) control systems have one input and one output.
Whereas, MIMO (Multiple Inputs and Multiple Outputs) control systems have more than

one input and more than one output.

Open Loop and Closed Loop Control Systems

Control Systems can be classified as open loop control systems and closed loop control

systems based on the feedback path.

In open loop control systems, output is not fed-back to the input. So, the control action is
independent of the desired output.

The following figure shows the block diagram of the open loop control system.

Actuating

Input Signal Output
—p—> Controller » Plant |

Here, an input is applied to a controller and it produces an actuating signal or controlling signal.
This signal is given as an input to a plant or process which is to be controlled. So, the plant
produces an output, which is controlled. The traffic lights control system which we discussed

earlier is an example of an open loop control system.

In closed loop control systems, output is fed back to the input. So, the control action is

dependent on the desired output.

The following figure shows the block diagram of negative feedback closed loop control system.
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The error detector produces an error signal, which is the difference between the input and the
feedback signal. This feedback signal is obtained from the block (feedback elements) by
considering the output of the overall system as an input to this block. Instead of the direct input,
the error signal is applied as an input to a controller.

So, the controller produces an actuating signal which controls the plant. In this combination, the
output of the control system is adjusted automatically till we get the desired response. Hence,
the closed loop control systems are also called the automatic control systems. Traffic lights
control system having sensor at the input is an example of a closed loop control system.

The differences between the open loop and the closed loop control systems are mentioned in

the following table.

Open Loop Control Systems Closed Loop Control Systems
Control action is independent of the Contral action is dependent of the
desired output, desired output,

Feedback path is not present, Feedback path is present.

These are also called as non-feedback These are also called as feedback
control systems. control systems.

Easy to design. Difficult to design,

These are economical, These are costlier,

Inaccurate, Accurate,

If either the output or some part of the output is returned to the input side and utilized as part
of the system input, then it is known as feedback. Feedback plays an important role in order to
improve the performance of the control systems. In this chapter, let us discuss the types of
feedback & effects of feedback.

Typesof Feedback

There are two types of feedback -

e Positive feedback

¢ Negative feedback
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Positive Feedback

The positive feedback adds the reference input, R(s)R(s) and feedback output. The following
figure shows the block diagram of positive feedback control system

R(s) —+

C(s)
G o

e

he concept of transfer function will be discussed in later chapters. For the time being, consider
the transfer function of positive feedback control system is,
_ G
T= 1

—CH {Equation 1)

Where,

T is the transfer function or overall gain of positive feedback control system.

e Gisthe open loop gain, which is function of frequency.

H is the gain of feedback path, which is function of frequency.
Negative Feedback

Negative feedback reduces the error between the reference input, R(s)R(s) and system output.

The following figure shows the block diagram of the negative feedback control system.

R(s) +

C(s)
G &
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Transfer function of negative feedback control system is,

T= % (Equation 2)

Where,

e Tis the transfer function or overall gain of negative feedback control system.
e Gisthe open loop gain, which is function of frequency.
e His the gain of feedback path, which is function of frequency.
The derivation of the above transfer function is present in later chapters.
Effects of Feedback
Let us now understand the effects of feedback.

Effect of Feedback on Overall Gain

e From Equation 2, we can say that the overall gain of negative feedback closed loop
control system is the ratio of 'G' and (1+GH). So, the overall gain may increase or
decrease depending on the value of (1+GH).

o Ifthe value of (1+GH) is less than 1, then the overall gain increases. In this case, 'GH' value
is negative because the gain of the feedback path is negative.

o If the value of (1+GH) is greater than 1, then the overall gain decreases. In this case, 'GH'
value is positive because the gain of the feedback path is positive.

In general, 'G' and 'H' are functions of frequency. So, the feedback will increase the overall gain
of the system in one frequency range and decrease in the other frequency range.
Effect of Feedback on Sensitivity

Sensitivity of the overall gain of negative feedback closed loop control system (T) to the
variation in open loop gain (G) is defined as

or
v 1 __ Percentage change in T
SG o % ~ Percentage change in G (Equation 3)

Where, 3T is the incremental change in T due to incremental change in G.

We can rewrite Equation 3 as

3
N|Q

ST =

& (Equation 4)

-
Q
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Do partial differentiation with respect to G on both sides of Equation 2,

ar _ @8 (] _ (l4+GH).1-G{H) 1 _
ac F( ‘1+G‘H) (L+GH)? (1+GH) (Egquation =)

From Equation 2, wou will get
£ =1+GH {Equation &)

T
Substitute Equation 5 and Equation & in Equation <.

1 ) 1
St = —m0m8 ——(14+GH) = —m/—
¢ (1+G‘H)9( )= 1rcH
So, we got the sensitivity of the overall gain of closed loop control system as the reciprocal of

(1+GH). So, Sensitivity may increase or decrease depending on the value of (1+GH).

o If the value of (1+GH) is less than 1, then sensitivity increases. In this case, 'GH' value is
negative because the gain of feedback path is negative.

o If the value of (1+GH) is greater than 1, then sensitivity decreases. In this case, 'GH' value
is positive because the gain of feedback path is positive.

In general, 'G' and 'H' are functions of frequency. So, feedback will increase the sensitivity of the
system gain in one frequency range and decrease in the other frequency range. Therefore, we
have to choose the values of 'GH' in such a way that the system is insensitive or less sensitive to

parameter variations.

Effect of Feedback on Stability
o A system is said to be stable, if its output is under control. Otherwise, it is said to be

unstable.

¢ In Equation 2, if the denominator value is zero (i.e., GH = -1), then the output of the

control system will be infinite. So, the control system becomes unstable.

Therefore, we have to properly choose the feedback in order to make the control system

stable.

Effect of Feedback on Noise

To know the effect of feedback on noise, let us compare the transfer function relations with

and without feedback due to noise signal alone.

Consider an open loop control system with noise signal as shown below.
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N(s)

R(s) ™ C(s)

't

The open loop transfer function due to noise signal alone is

C(s)

o) = Gy (Equation 7)

It is obtained by making the other input R(s) equal to zero,

N(s)

R(s) + + c(s)

H e

The closed loop transfer function due to noise signal alone is

Cls) Gy _
N(s) ~ 1+G.GH (Equation &)

It iz obtained by making the other input R(s) equal to zero,
Compare Equation 7 and Equation &,

In the closed loop control system, the gain due to noise signal is decreased by a
factor of (1 + G,GyH) provided that the term (1 + GoGyH) is greater than
one,
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The control systems can be represented with a set of mathematical equations known as
mathematical model. These models are useful for analysis and design of control systems.
Analysis of control system means finding the output when we know the input and mathematical
model. Design of control system means finding the mathematical model when we know the input
and the output.

The following mathematical models are mostly used.

o Differential equation model
e Transfer function model

e  State space model

Modeling of Control Systems:

The first step in the design and the analysis of control system is to build physical and mathematical
models. A control system being a collection of several physical systems (sub systems) which may be
of mechanical, electrical electronic, thermal, hydraulic or pneumatic type. No physical system can
be represented in its full intricacies. Idealizing assumptions are always made for the purpose of
analysis and synthesis. An idealized representation of physical system is called a Physical Model.

Control systems being dynamic systems in nature require a quantitative mathematical
description of the system for analysis. This process of obtaining the desired mathematical
description of the system is called Mathematical Modeling.

In Unit 1, we have learnt the basic concepts of control systems such as open loop and feedback
control systems, different types of Control systems like regulator systems, follow-up systems and
servo mechanisms. We have also discussed a few simple applications. In this chapter we learn the
concepts of modeling.

The requirements demanded by every control system are many and depend on the system
under consideration. Major requirements are 1) Stability 2) Accuracy and 3) Speed of Response. An
ideal control system would be stable, would provide absolute accuracy (maintain zero error despite
disturbances) and would respond instantaneously to a change in the reference variable. Such a
system cannot, of course, be produced. However, study of automatic control system theory would
provide the insight necessary to make the most effective compromises so that the engineer can
design the best possible system. One of the important steps in the study of control systems is
modeling. Following section presents modeling aspects of various systems that find application in
control engineering.
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The basic models of dynamic physical systems are differential equations obtained by the
application of appropriate laws of nature. Having obtained the differential equations and where
possible the numerical values of parameters, one can proceed with the analysis. When the
mathematical model of a physical system is solved for various input conditions, the results represent
the dynamic response of the system. The mathematical model of a system is linear, if it obeys the
principle of superposition and homogeneity.

A mathematical model is linear, if the differential equation describing it has coefficients,
which are either functions of the independent variable or are constants. If the coefficients of the
describing differential equations are functions of time (the independent variable), then the
mathematical model is linear time-varying. On the other hand, if the coefficients of the describing
differential equations are constants, the model is linear time-invariant. Powerful mathematical tools
like the Fourier and Laplace transformations are available for use in linear systems. Unfortunately
no physical system in nature is perfectly linear. Therefore certain assumptions must always be made
to get a linear model.

Usually control systems are complex. As a first approximation a simplified model is built to
get a general feeling for the solution. However, improved model which can give better accuracy can
then be obtained for a complete analysis. Compromise has to be made between simplicity of the
model and accuracy. It is difficult to consider all the details for mathematical analysis. Only most
important features are considered to predict behavior of the system under specified conditions. A
more complete model may be then built for complete analysis.

Modeling of Mechanical Systems:

Mechanical systems can be idealized as spring- mass-damper systems and the governing
differential equations can be obtained on the basis of Newton’s second law of motion, which states
that

F = ma: for rectilinear motion

where F: Force, m: mass and a: acceleration (with consistent units)
T =1a: or Ja for rotary motion

where T: Torque, | or J: moment of inertia and a: angular acceleration (with consistent units)

Mass / inertia and the springs are the energy storage elements where in energy can be stored
and retrieved without loss and hence referred as conservative elements. Damper represents the
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energy loss (energy absorption) in the system and hence is referred as dissipative element.
Depending upon the choice of variables and the coordinate system, a given physical model may lead
to different mathematical models. The minimum number of independent coordinates required to
determine completely the positions of all parts of a system at any instant of time defines the degrees
of freedom (DOF) of the system. A large number of practical systems can be described using a finite
number of degrees of freedom and are referred as discrete or lumped parameter systems. Some
systems, especially those involving continuous elastic members, have an infinite number of degrees
of freedom and are referred as continuous or distributed systems. Most of the time, continuous
systems are approximated as discrete systems, and solutions are obtained in a simpler manner.
Although treatment of a system as continuous gives exact results, the analysis methods available for
dealing with continuous systems are limited to a narrow selection of problems. Hence most of the
practical systems are studied by treating them as finite lumped masses, springs and dampers. In
general, more accurate results are obtained by increasing the number of masses, springs and
dampers-that is, by increasing the number of degrees of freedom.

Mechanical systems can be of two types:

1) Translation Systems
2) Rotational Systems.

The variables that described the motion are displacement, velocity and acceleration.
And also we have three parameters-

e Mass which is represented by ‘M’.
e Coefficient of viscous friction which is represented by ‘B’.
e Spring constant which is represented by ‘K’.

In rotational mechanical type of systems we have three variables-

e Torque which is represented by ‘T’.
e Angular velocity which is represented by ‘w’
e Angular displacement represented by ‘0’

10
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Now let us consider the linear displacement mechanical system which is shown
below-

—»X

%TWAJ e

spring mass mechanical system

We have already marked various variables in the diagram itself. We have x is the displacement as
shown in the diagram. From the Newton’s second law of motion, we can write force as

da? dt

= M— == & K
F Idzy +de+1\:
dt
F, = BE
F; = Kz
From the diagram we can see that
the,
F=Fi+F+F3

On substituting the values of F1, F2 and F3 in the above equation and taking the Laplace transform

we have the transfer function as,

1

R

Mathematical Modeling of Electrical System:

In electrical type of systems we have three variables -

e Voltage which is represented by ‘V’.
e Current which is represented by ‘I’
e Charge which is represented by ‘Q’.
And also we have three parameters which are active and passive elements —
e Resistance which is represented by ‘R’.
e Capacitance which is represented by ‘C'.

e Inductance which is represented by ‘L’
Now we are in condition to derive analogy between electrical and mechanical types of

11
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systems. There are two types of analogies and they are written below:

Force Voltage Analogy :

In order to understand this type of analogy, let us consider a circuit which consists of
seriescombination of resistor, inductor and capacitor.

R L
TN
V(t)

A voltage V is connected in series with these elements as shown in the circuit diagram. Now
from the circuit diagram and with the help of KVL equation we write the expression for voltage in
terms of charge, resistance, capacitor and inductor as,

2
V:Ldt

dt

a
c
Now comparing the above with that we have derived for the mechanical system we find that-

Mass (M) is analogous to inductance (L).

Force is analogous to voltage V.

Displacement (x) is analogous to charge (Q).

Coefficient of friction (B) is analogous to resistance R and
Spring constant is analogous to inverse of the capacitor

ok~ wn e

(C).This analogy is known as force voltage analogy.

Force Current Analogy :
In order to understand this type of analogy, let us consider a circuit which consists of parallel

combination of resistor, inductor and capacitor.
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Avoltage E is connected in parallel with these elements as shown in the circuit diagram. Now
from the circuit diagram and with the help of KCL equation we write the expression for currentin
terms of flux, resistance, capacitor and inductor as,

dt? 1 dt @

I=Cd2_1&+§du"+z

Now comparing the above with that we have derived for the mechanical system we find that,

Mass (M) is analogous to Capacitor (C).

Force is analogous to current I.

Displacement (x) is analogous to flux ().

Coefficient of friction (B) is analogous to resistance 1/ R and
Spring constant K is analogous to inverse of the inductor (L).

o wnE

This analogy is known as force current analogy.

13
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MODULE-2

TIME RESPONSE ANALYSIS

We can analyze the response of the control systems in both the time domain and the frequency
domain. We will discuss frequency response analysis of control systems in later chapters. Let us
now discuss about the time response analysis of control systems.

Whatis Time Response?

If the output of control system for an input varies with respect to time, then it is called
the time response of the control system. The time response consists of two parts.

e Transient response
e Steady state response

The response of control system in time domain is shown in the following figure.

c(t)
A

>
0 < >< > ¢

Transient Steady
State state

Here, both the transient and the steady states are indicated in the figure. The
responses corresponding to these states are known as transient and steady
state responses.

Mathematically, we can write the time response c(t) as

e(t) = cip(t) +ess()
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Where,

e Cu(t)is the transient response

e Cs(t) is the steady state response

Transient Response

After applying input to the control system, output takes certain time to reach steady state. So,

the output will be in transient state till it goes to a steady state. Therefore, the response of the
control system during the transient state is known as transient response.

The transient response will be zero for large values of ‘t’. Ideally, this value of ‘t’ is infinity and
practically, it is five times constant.

Mathematically, we can write it as

lim ¢4 (t) = 0

t—+o0
Steady state Response

The part of the time response that remains even after the transient response has zero value for
large values of ‘t’ is known as steady state response. This means, the transient response will be
zero even during the steady state.

Example

Let us find the transient and steady state terms of the time response of the control system
c(t) = 10 + bt

4

Here, the second term de will be zero as t denotes infinity. So, this is the transient term.

And the first term 10 remains even as t approaches infinity. So, this is the steady state term.
Standard Test Signals

The standard test signals are impulse, step, ramp and parabolic. These signals are used to
know the performance of the control systems using time response of the output.
Unit Impulse Signal

A unit impulse signal, 6(t) is defined as

47
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d(t) =0 fort £ 0
and [ 6(t)dt = 1

The following figure shows unit impulse signal.

81) 4

rr

So, the unit impulse signal exists only at‘t’ is equal to zero. The area of this signal under small

interval of time around‘t’ is equal to zero is one. The value of unit impulse signal is zero for all

other values of‘t’.

Unit Step Signal

A unit step signal, u(t) is defined as
u(t) =1Lt =0

=0;t<0

Following figure shows unit step signal.

ult)

3

i

"y

48
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So, the unit step signal exists for all positive values of‘t’ including zero. And its value is one

during this interval. The value of the unit step signal is zero for all negative values of‘t’.

Unit Ramp Signal

A unit ramp signal, r (t) is defined as

rit) =t;t =0

=0t<0

Wie can write unit ramp signal, r(t) in terms of unit step signal, u(t) as

Following figure shows unit ramp signal.

r(t)
A

>
0 t

So, the unit ramp signal exists for all positive values oft’ including zero. And its value increases

linearly with respect to‘t’ during this interval. The value of unit ramp signal is zero for all negative
values of‘t’.

Unit Parabolic Signal

A unit parabolic signal, p(t) is defined as,

#2
t)= —:t =10
p(t) 53t 2
=0;t<0

49
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We can write unit parabolic signal, p(t) in terms of the unit step signal, u(t) as,

The following figure shows the unit parabolic signal.,

p(t)
A
! o
() t

So, the unit parabolic signal exists for all the positive values of‘t’ including zero. And its value
increases non-linearly with respect tot’ during this interval. The value of the unit parabolic signal
is zero for all the negative values of‘t’.

In this chapter, let us discuss the time response of the first order system. Consider the following
block diagram of the closed loop control system. Here, an open loop transfer function, 1/sT is
connected with a unity negative feedback.

s >

Wie lknow that the transfer function of the closed loop control system has unity
negative feedback as,

C(s)  G(s)
R(s) 1+ G(s)
Substitute, G(s) = % in the above equation.
C'(s) = 1

R(s) 1+$ o sT + 1

The power of ¢ is one in the denominator term. Hence, the abowe transfer
function is of the first order and the system is said to be the first order
system.

50
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We can re-write the above equation as

1
Cle) = (T—H) k(s)
Where,

3 C{s) is the Laplace transform of the ocutput signal ot),
3 R{s) is the Laplace transform of the input signal r(t), and

2 Tis the time constant.

Follow these steps to get the response (output) of the first order system in the
time domain.

[0

Take the Laplace transform of the input signal »(t).

L

Consider the equation, C(s) = (sT1+1 ) R(s)

o

Substitute R(s) value in the above equation,

L

Do partial fractions of C'(s) if required.

| !

Apply inverse Laplace transform to C(s).

Impulse Response of First Order System

Consider the unit impulse signal as an input to the first order system.

So, r(t)=5(t)
Apply Laplace transform on both the sides.

R(s) =1

Consider the equation, C(s) = (ﬁ) R(s)

Substitute, R(s) = 1in the above equation,

1 1
Cle) = (ﬁ)“}:ﬁ

Rearrange the above equation in one of the standard forms of Laplacetransforms.

51
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C{s}:;:}rﬂ{s}:l( ! )

T{s-l—%) s-l—%

Applying Inverse Laplace Transform on both the sides,

The unit impulse response is shown in the following figure.

c(t)

1
T

The unit impulse response, c(t) is an exponential decaying signal for positive values of ‘t’ and it

is zero for negative values of ‘t’.

Step Response of First Order System

Consider the unit step signal as an input to first order system.

So, r(t)=u(t)

52
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Consider the equation, C(s) = (ﬁ) R(s)

Substitute, R(s) = % in the above equation,

0 =(z71) G) = 7w

Co partial fractions of C(=s).

1 A B
' = - = _
(5) s(sT + 1) s +5T—|—1
1 A(sT 4+ 1) + Bs
— =
s(sT 4+ 1) s(sT +1)

DEPT. OF ME

On both the sides, the denominator term is the same. So, they will get cancelled by each other.

Hence, equate the numerator terms.
1=A(sT+1)+Bs
By equating the constant terms on both the sides, you will get A=1.
Substitute, A =1 and equate the coefficient of the s terms on both the sides.
0=T+B
=B=-T

Substitute, A=1 and B = -T in partial fraction expansion of C(s)

Cw_l T 1 T

s sT+1 s T(s—i—%)

Apply inverse Laplace transform on both the sides.

c(t) = (1 _ e‘(‘i)) u(t)

53
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The unit step response, c(t) has both the transient and the steady state terms.
The transient term in the unit step response is -

cer(®) = —e (Fu(e)

The steady state term in the unit step response is —
css(t) = u(t)

The following figure shows the unit step response

c(t)
A

=
t

The value of the unit step response, c(t) is zero at t = 0 and for all negative values of t. It is
gradually increasing from zero value and finally reaches to one in steady state. So, the steady
state value depends on the magnitude of the input.

Ramp Response of FirstOrder System

Consider the unit ramp signal as an input to the first order system.

So,r(t)=t u(t)
Apply Laplace transform on both the sides.

Consider the equation, C(s) = (ﬁ) R(s)

Substitute, R(s) = % in the above equation.

0=(zv1) (5) - w@rs

54
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Do partial fractions of C'(s).

C(s) 1 A N B N C
Ns)= —— = 4+ — 4 ———
s?(sT+1) s?2 s sT+1
1 A(sT +1) 4+ Bs(sT + 1) + Cs?
] =
s2(sT + 1) s¥(sT + 1)

On both the sides, the denominator term is the same. So, they will get cancelled by each
other. Hence, equate the numerator terms.

1= A(sT + 1) + Bs(sT + 1) 4+ Cs®

By equating the constant terms on both the sides, you will get A= 1.

Substitute, A = 1 and equate the coefficient of the s terms on both the sides.

0=T+B=B=-T

Similarly, substitute B = -T and equate the coefficient of s> terms on both the sides. You will
get C=T?
Substitute A =1, B=-T and C=T?in the partial fraction expansion of C(s).

1 T, T2 1 T, T2

s2? s ST+1 s s T(s+ %)

Apply inverse Laplace transform on both the sides.

)) u(t)

The unit ramp response, c(t) has both the transient and the steady state terms.

H |~

e(t) = (t - T —I—TE_(

The transient term in the unit ramp response is

t

ew(t) = Te (F)ugt)

55
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The steady state term in the unit ramp response is —

Css(t) = (t — T)ult)

The figure below is the unit ramp response:

The unit ramp response, c(t) follows the unit ramp input signal for all positive values of t. But,
there is a deviation of T units from the input signal.

Parabolic Response of First Order System

Consider the unit parabolic signal as an input to the first order system.

So, r(t) = Lu(t)

Apply Laplace transform on both the sides.

Consider the equation, C(s) = (ﬁ) R(s)

Substitute R(s) = % in the above equation.

- () (3) - 75
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Do partial fractions of C(s).

C(s) 1 A N B N C N D
sl = — — — ———— = — —_— N —_—
s3sT+1) s* s2 s sT+1
After simplifying, vou will get the walues of A B, C and D as 1,
-7, T?and — T3 respectively, Substitute these values in the abowve partial

fraction expansion of Cis).

C(s) I

1
=
T

_ 1T, 7 T 1T T
—m et T a2l =g -+

Apply inverse Laplace transform on both the sides.
t2 (L
c(t) = (E —Tt+T?—T% (T)) u(t)

The unit parabolic response, c(t) has both the transient and the steady
state terms.

The transient term in the unit parabolic response is
-(+)
Chyr {t} =-T% \r u{t}
The steady state term in the unit parabolic response is

tE
Cos(t) = (E — Tt + TZ) u(t)

From these responses, we can conclude that the first order control systems are not stable with
the ramp and parabolic inputs because these responses go on increasing even at infinite amount
of time. The first order control systems are stable with impulse and step inputs because these
responses have bounded output. But, the impulse response doesn’t have steady state term. So,

the step signal is widely used in the time domain for analyzing the control systems from their

responses.
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In this chapter, let us discuss the time response of second order system. Consider the following
block diagram of closed loop control system. Here, an open loop transfer function, w ? /
s(s+26wn) is connected with a unity negative feedback.

R(s) + w, 2 C(s)

——>

g s(s+26w,)

We know that the transfer function of the closed loop control system having

unity negative feedback as

Cls)  Gls)
R(s) 1+G(s)
Substitute, G(s) = S(HLM in the above equation.
(i)
C(S) _ s(s4+2dw,,) B w%
R(s) B\ 82+ 20wns + Wl
8) 14 (m) s Wi + wa

The power of ‘s’ is two in the denominator term. Hence, the above transfer function is of the

second order and the system is said to be the second order system.

The characteristic equation is -

s? + 20w, s +wk =
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The roots of characteristic equation are -

3 ."ll ] — '|!2 e 4
—2wd,, + \ (26, )2 — dewst —2(beon + wp 82 — 1)
5 = e
2 2
_— 1 1 / S
is_—éuniuﬂﬁég 1 b

e The two roots are imaginary when § = 0.

o Thetwo roots are real and equal when 6 = 1.

e The two roots are real but not equal when § > 1.

¢ The two roots are complex conjugate when 0< 6 < 1.

We can write C(s) equation as,

wih
C(s) = R(s)
s? 4+ 20w, s + w?
Where,

e C(s) is the Laplace transform of the output signal, c(t)
¢ R(s) is the Laplace transform of the input signal, r(t)
e n is the natural frequency
e 0 is the damping ratio.

Follow these steps to get the response (output) of the second order system in the time
domain.

Take Laplace transform of the input signal, r(t).

Consider the equation, C(s) = (m) R(s)

Substitute R(s) value in the above equation,
Do partial fractions of C'(s) if required.

Apply inverse Laplace transform to C(s).
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Step Response of Second Order System

Consider the unit step signal as an input to the second order system.Laplace transform of the
unit step signal is,

R(s) = —
We know the transfer function of the second order closed loop control system
is,
R(s) 52 + 28wy, 5 + wi

Case 1: & =0
Substitute, d = 0 in the transfer functicon.

R(s) =% + ok

Substitute, Ris) = % in the abowve equation.

o = (525 7)) (G )_m

Apply inverse Laplace transform on both the sides,

cl(t) = (1 — cos(w,t)) w(t)
So, the unit step response of the second order system when /delta = 0 will be

a continuous time signal with constant amplitude and frequency.

Case 2: 5 =1
Substitute, /delta = 1 in the transfer function.

Cls) w2
R(s) 52 4 2wpns + wl
o
@ = (25 ) R
Substitute, R(s) = ? in the abowe equation.

C(s) = {5+wﬂ}2)( ) s{s+wn}2

Do partial fractions of C'(s).
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w? A B C
Cls)=—————=—+ +
s(s +wy)? s s+wp, (5+w,)?

After simplifying, vou will get the values of &, B and C as 1, —land — w,
respectively, Substitute these walues in the above partial fraction expansion of

C(s).

)=+ ___@n

s s+wn (5+wy)?

Apply inverse Laplace transform on both the sides,
e(t) = (1 — e ™™ — wy te “nb)u(t)

S0, the unit step response of the second order system will try to reach the step
input in steady state,

Case3:0<0<1

We can modify the denominator term of the transfer function as follows —
52+ 20ws +wd = {5 4+ 2(5) (dwn) + (dwn)?} +wd — (duwy,)?
= (5 + dewn)? + Wk (1 4%

The transfer function becomes,

C(s) w2
R(s) (5 + dwp)? + w2 (1 — 42)
w?
= (C'(s) = ( n ) R(s)

(5 + dwp)? +wd (1 — 42)

Substitute, R(s) = % in the above equation,

Wi 1\ _ i
C(s) = ({S+an]2 —I—Ld%{l _ 52}) (S) B 5([5-!—5&..‘“]'2 —|—w%l[1 _52])
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Do partial fractions of C'(s).

C(s) = wi _ﬂ_'_ Bs+C
T s (54 dwn)? +W2(1-62)) s (54 dwn)? +wk(1—42)

After simplifying, vou will get the values of &, B and C as 1, —land — 2dw,
respectively. Substitute these values in the abowve partial fraction expansion of
Cis).

1 s + 2dwy,
s (s+dwy)? +wi(1-—42)

C(s) 1 5 + dwy, Oy,
N8 = — — —
5 (s+dwp)? +en(1—-62)  (s+dwp)? +wn(l—42)

ot (i)
§ ( &+, ) Hio vV 1—62 ) 1—4% \ (5o, )P+, v 1—47)°

Substitute, wy,vV'1 — 82 as wy in the above equation.

C(s) 1 (8 + dewyy) 4 [F
Neg) = — — _
5 (5 + dwy)? +wl V1 — 82 \ (5 + den)? +
Apply inverse Laplace transform on both the sides.
—dia,t d —da,t -
cft)=[1—e cos(wgt) — —— sinfwgt) | w(t)
v1—4d

—du, t
e(t) = (1 _ h ({xﬂ — 8% cos(wat) + Jsin{wdt])) w(t)

If v1— 42 = sin(#), then '& wil be cos(8). Substitute these walues in the

above equation.

4
L

e ~9wn
c(t) = (1 — m (sin(#) cos(wgt) + cos(d) sin(wg t}}) wu(t)

= c(t) = (1 - (%) sin(wgt + .9}) u(t)
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So, the unit step response of the second order system is having damped oscillations
(decreasing amplitude) when ‘6’ lies between zero and one.

Case4:6>1

We can modify the denominator term of the transfer function as follows -
5% 4 20w s + wh = {5 + 2(8) (dwn) + (dwn)?} +wd — (dw,)?
= (5 + duw,)® —w? (82 — 1)
The transfer function becomes,

C(s) why

R(s) (54 dwy)? — (62 — 1)

2

- = ({s i) — A ) ) e

Substitute, R(s) = % in the above equation.

0= (i)

Do partial fractions of C'(s).

| =

_ o
) s s+, +oa, V Jz—ljllis-l-ﬁ%—%v Jz—lj

2

Lln
C(s) = —
s(s + by, +wn vi2 — 1)(5 + dw, — wpVvid2 — 1)
A B C

5 s+dw, twpvdl—1 s+ 0w, —w,vd2i-—1

1
2(d-+v/d?—1)(v/d>—1)

After simplifying, vou will get the values of A, B and C as 1,
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a respectively, Substitute these wvalues in abowve partial

nd 1
AV 1)V 1)
fraction expansion of C(s).

Cl(s) = 1 + = ( L )
5§ 2(6+ V82 —1)(v82 — 1) \s +dw, +wpVvé2 — 1

1 =)
(2{5 — Va2 —1)(Vir—1) ) s + dwp — wp Va2 — 1
Apply inverse Laplace transform on both the sides,

c(t)
o~ (du, Fo, V2102

_ 1
B (1 " (zmﬂz—l:lwaz—n)
) E—(Jr.\.l.,.,—r.\.l..,v c’fz—l]lt) u[t}

_ 1
(zia—ﬁz—uwaz—lj

Since it is over damped, the unit step response of the second order system when 6 > 1 will

never reach step input in the steady state.

Impulse Response of Second Order System

The impulse response of the second order system can be obtained by using any one of these

two methods.

e Follow the procedure involved while deriving step response by considering the value
of R(s) as 1 instead of 1/s.

o Do the differentiation of the step response.

The following table shows the impulse response of the second order system for 4 cases of the

damping ratio.
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Condition of Damping ratio Impulse response fort = 0
&d=0 Wy SInfwy,t)
=1 Wi te "t
O<d <1 o, £t .
S (wgt
(m ) (cat)

5 > 1 ( Ly ) (E—Hmh—u.hvd‘z—lllt

24431

__E—wmfmhﬁﬁiiﬁ)

In this chapter, let us discuss the time domain specifications of the second order system. The
step response of the second order system for the underdamped case is shown in the following
figure.

c(t)

1-351_ .............. i L
L

0.95

0.5

=
~

7

~
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All the time domain specifications are represented in this figure. The response up to the settling
time is known as transient response and the response after the settling time is known as steady
state response.

DelayTime
It is the time required for the response to reach half of its final value from the zero instant. It
is denoted by tdtd.

Consider the step response of the second order system for t 2 0, when ‘8’ lies between zero and
one.

E—Ju.n,,t
c(t) =1— (—) sin(wgt + 0)
v1— 42

The final value of the step response is one,

Therefore, at t =14, the value of the step response will be 0.5 Substitute,
these values in the above equation.

E—J[.\.l“td'

c(tg) =05 =1— (—) sin(wgty + 0)
vV1— 42

B

E_antd'
= (—) sin(wgtgy +6) = 0.5
v1— 42

By using linear approximation, you will get the delay time tyg as

140.7
tg= ———
wﬂ

RiseTime

It is the time required for the response to rise from 0% to 100% of its final value. This is
applicable for the under-damped systems. For the over-damped systems, consider the duration
from 10% to 90% of the final value. Rise time is denoted by t..

Att=t1=0, c(t) = 0.

We know that the final value of the step response is one.Therefore, at t=t2, the value of step

response is one. Substitute, these values in the following equation.
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E—Ju.l.,,t
c(t) =1— (—) sin(wgt + 6)
Vv1— 42

E—d'[a..'“tg

c(tg) =1=1-— (—) sin(wgty + 0)
Vv1-— 42

B

E—J[a...'“tg
= (—) sin(wgtg +6) =0
v1— 42
= sin(wgte +6) =0
= wyity + =

m—f
:}tgz

Wy
Substitute ty and ts values in the following equation of rise time,

t, =ta — 14

From above equation, we can conclude that the rise time tr and the damped frequency wq are

inversely proportional to each other.
PeakTime

It is the time required for the response to reach the peak value for the first time. It is denoted
by tp. At t=t, the first derivate of the response is zero.

We know the step response of second order system for under-damped case is

E—&%t
c(t) =1— (—) sin(wyt + 0)
Vv1— 42

Differentiate e(t) with respect to 't’,

de(t —dwgt Sy e —funt
i = - (E—) wy cos(wgt + @) — (&L) sin(wgt + @)
dt V1—§? V1—§2
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E—J%t
e(t) =1— (—) sin(wyt + 6)
Vv1— 42

Differentiate c(t) with respect to 't

de(t) e dnt — Juop et
—— = — | —— |wycos(wygt + #) — | —— | sin(wyt + ¢
dt (v"l—cﬂ) ; (a ) ( v1— 42 ) (wa )
Substitute, t = t; and % = 0 in the above equation.

E—Jr.\.n"tp
0=— (—) wa cos(watp +8) — dwy, sin(waty, + )]

iee
= Wy fﬁcus (watp + 8) — dwy, sin(wgt, +60) =0
= g"ﬁf cos(wgty +0) — dsin(wyt, +6) =0
= sin(f) cos(wgt, + ) — cos(#) sin(wyt, +6) =0
= sin(f — wyty; — ) =0

= sin(—wgty) = 0 = —sin(wgty) = 0 = sin(wyty) =0

= wgty, =
. T
=1, = —
f2 Wy

From the above equation, we can conclude that the peak time tpand the damped

frequency wq are inversely proportional to each other.

Peak Overshoot

Peak overshoot M, is defined as the deviation of the response at peak time from the final

value of response. It is also called the maximum overshoot.
Mathematically, we can write it as

Mp=c(tp) - c(°°)

Where,c(tp) is the peak value of the response, c(o°) is the final (steady state) value of the
response.
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At t=tp, the response c(t) is -

4

E—J[.un ip

c(ty) =1— (—) sin(wgt, + 0)
F Vv1-— 42 F

o

Substitute, t, = wl, in the right hand side of the above equation.

e(tp) =1— (ﬁ\ sin(wd ( T ) +9)

\ w"ﬁ } W

=c(t,) = 1— (— sin(@))
d V1 — §2
We know that
sin(f) = /1 — g2

So, we will gete(ty) as

cltp) = 1 +E_(¢%)

Substitute the values of e(tp) and c(oo) in the peak overshoot equation.

M, = 1+e_(»@) 1

= M, = E_( fﬁ)

Percentage of peak overshoot 24 M’P can be calculated by using this
formula.
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From the above equation, we can conclude that the percentage of peak overshoot %Mp will
decrease if the damping ratio 6 increases.

Settlingtime

It is the time required for the response to reach the steady state and stay within the specified
tolerance bands around the final value. In general, the tolerance bands are 2% and 5%. The
settling time is denoted by ts.

The settling time for 5% tolerance band is —

t. = — =371
T dwy,

The settling time for 2% tolerance band is —

: =47
dewy,

ty; =

Where, T is the time constant and is equal to 1/6wn.
e Both the settling time ts and the time constant t are inversely proportional to the
damping ratio 6.
e Both the settling time ts and the time constant t are independent of the system gain.
That means even the system gain changes, the settling time ts and time constant t will
never change.

Example

Let us now find the time domain specifications of a control system having the closed loop
transfer function when the unit step signal is applied as an input to this control system.

We know that the standard form of the transfer function of the second order closed loop
control system as

Wi

52 + 20w, 5 + w2

By equating these two transfer functions, we will get the un-damped natural frequency wnas 2
rad/sec and the damping ratio § as 0.5.
We know the formula for damped frequency wqas

Wi = wpy/1— g2
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Wy =wpy'1— &>

Substitute, wy, and d values in the above formula,
= Wy = 2,;"1 — (0.5)?
= wy = 1.732 rad/ sec

Substitute, d value in following relation

f=cos!§

= f =cos }(0.5) = %md

Substitute the above necessary values in the formula of each time domain specification and

simplify in order to get the values of time domain specifications for given transfer function.

The following table shows the formulae of time domain specifications, substitution of
necessary values and the final values

71



BRINDAVAN COLLEGE OF ENGINEERING DEPT. OF ME

Time domain Formula Substitution of Final value
specification values in Formula
. 1+0.74 0.
Delay time tg = M“? tg = w tg=0.675 sec
. : T T—(Z) —
Rise time t, = o t, = 1.?;2 t,=1.207 sec
. _ _ = _
Peak time ty, = o tp = 1733 t,=1.813 sec
% Peak YoM, YoM, % My =16.32%
overshoot A & N
= [ \"Iﬁ = [ \"Il'iu'&:lz
% 100% x 100%
. . _ i — 4 — =
Settling  time ty = Ton tg = 0E)2) ty =4 sec
for 2%

tolerance band

The deviation of the output of control system from desired response during steady state is

known as steady state error. It is represented as €ss. We can find steady state error using the
final value theorem as follows.

Ess = l]im e(t) = lim E(s)

o0 s—+0

Where,

E(s) is the Laplace transform of the error signal, e(t)
Let us discuss how to find steady state errors for unity feedback and non-unity feedback control
systems one by one.
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Steady State Errors for Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having unity

negative feedback.

R(s) + G(s)

!

Where,

C(s)
-

= R{s) is the Laplace transform of the reference Input signal r(t)

2 C(=) is the Laplace transform of the output signal e(t)

We know the transfer function of the unity negative feedback closed loop

control system as

C(s)  Gis)
R(s) 14+G(s)
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R(s)G(s
Ble) = Rle) - 5 EL}G{{S}}
_ R(s) + R(s)G(s) — R(s)G(s)
= Els) = 1+ G(s)
_R(s)
=88 =T em

Substitute E(s) value in the steady state error formula

The following table shows the steady state errors and the error constants for standard input

signals like unit step, unit ramp & unit parabolic signals.

Input signal Steady state error e, Error constant
unit step signal lep K, = lim,_,y G(s)
unit ramp signal }}D K, = lim,_,; sG(s)
unit parabolic signal }} K, =1limg SEG{S}

Where, Kp, Kv and Ka are position error constant, velocity error constant and acceleration

error constant respectively.
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Note - If any of the above input signals has the amplitude other than unity, then multiply

corresponding steady state error with that amplitude.

Note - We can’t define the steady state error for the unit impulse signal because, it exists only
at origin. So, we can’t compare the impulse response with the unit impulse input as t denotes
infinity

Example

12
Let us find the steady state error for an input signal r(t) = (5 + 2t + b?) u(t)
. . _ . B(s+4)
of unity negative feedback control system with G(s) = ESyE)]
The given input signal is a combination of three signals step, ramp and parabolic.
The following table shows the error constants and steady state error values for

these three signals.,

Input signal Error constant Steady state error
T"]_{t} = 51.:..{1?} KP = ]j]I[S_}U G{S} e Egsl = TEII;P =1
: 2
ro(t) = 2tu(t) K, = lim,_ sG(s) ez = 2 =0
=0
t T 1
Tal[t}l = Tu{t} Ko =lim;, SEG{S} Ess3 — F 1
=1

We will get the overall steady state error, by adding the above three steady state errors.

€55 = €5511€552+E553

=e,=0+0+1=1=>e,=0+0+1=1

Therefore, we got the steady state error ess as 1 for this example.
SteadyStateErrors for Non-Unity Feedback Systems
Consider the following block diagram of closed loop control system, which is having non unity

negative feedback.
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R(=) 7 G(s) <)

H(s) [&—

We can find the steady state errors only for the unity feedback systems. So, we have to convert
the non-unity feedback system into unity feedback system. For this, include one unity positive
feedback path and one unity negative feedback path in the above block diagram. The new block

diagram looks like as shown below.

o

R(s) + C(s)

G(s) =

H(s) [«

Simplify the above block diagram by keeping the unity negative feedback as it is. The following
is the simplified block diagram
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R(s) + G(s) )
"is G(s)H(s) — G(s) =

This block diagram resembles the block diagram of the unity negative feedback closed loop
control system. Here, the single block is having the transfer function G(s) / [ 1+G(s)H(s)-G(s)]
instead of G(s).You can now calculate the steady state errors by using steady state error formula
given for the unity negative feedback systems.

Note - It is meaningless to find the steady state errors for unstable closed loop systems. So,
we have to calculate the steady state errors only for closed loop stable systems. This means we
need to check whether the control system is stable or not before finding the steady state errors.
In the next chapter, we will discuss the concepts-related stability.

The various types of controllers are used to improve the performance of control systems. In this
chapter, we will discuss the basic controllers such as the proportional, the derivative and the

integral controllers.

Proportional Controller

The proportional controller produces an output, which is proportional to error signal.
u(t) oc e(t)
= u(t) = Kpe(t)
Apply Laplace transform on both the sides -
U(s) = KpE(s)

Uls)
Bs) T

Therefore, the transfer function of the proportional controller is KPKP.
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Where,

U(s) is the Laplace transform of the actuating signal u(t)
E(s) is the Laplace transform of the error signal e(t)

Kp is the proportionality constant

The block diagram of the unity negative feedback closed loop control system along with the

proportional controller is shown in the following figure.

E U(
R(s) + (s) = s) — $C(sz

Derivative Controller

The derivative controller produces an output, which is derivative of the error signal.

Therefore, the transfer function of the derivative controller is Kps.
Where, KD is the derivative constant.
The block diagram of the unity negative feedback closed loop control system along with the

derivative controller is shown in the following figure.
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E(s) U(s)
JOF > SOy LG/ preg BIKC)

The derivative controller is used to make the unstable control system into a stable one.

Integral Controller
The integral controller produces an output, which is integral of the error signal.

u(t) = K; /e{t}dt

Apply Laplace transform on both the sides -

o) - KB
Uls) _ Ki
E(s) 8

Therefore, the transfer function of the integral controller is TI

Where, KIKI is the integral constant.
The block diagram of the unity negative feedback closed loop control system along with the

integral controller is shown in the following figure.

E(s) u(s)
RO R e |3 605y [—s
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The integral controller is used to decrease the steady state error.
Let us now discuss about the combination of basic controllers.

Proportional Derivative (PD) Controller

The proportional derivative controller produces an output, which is the combination of the
outputs of proportional and derivative controllers.

de(t)

ut) = Kpe(t) + Kp—

Apply Laplace transform on both sides -

U(s) = (Kp + Kps)E(s)

U(s)
E(s)

=Kp+ Kps

Therefore, the transfer function of the proportional derivative controller is Kp+Kps.
The block diagram of the unity negative feedback closed loop control system along with the

proportional derivative controller is shown in the following figure.

R(s) + E(s) U(s) C(s)
Kp + Kp sl——| G(s) S

The proportional derivative controller is used to improve the stability of control system
without affecting the steady state error.

Proportional Integral (Pl) Controller

The proportional integral controller produces an output, which is the combination of outputs
of the proportional and integral controllers.
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u(t) = Kpe(t) + Kr /-El[t}{ft

Apply Laplace transform on both sides -

U(s) = (Kp + %) E(s)
Uls) K;
E(s) Kp+ -7

Therefore, the transfer function of proportional integral controlleris Kp + %

The block diagram of the unity negative feedback closed loop control system along with the
proportional integral controller is shown in the following figure.

R(s) +<»E(s) x, 1 Y(s) C(s)
Kp+? —| G(S) & 5

The proportional integral controller is used to decrease the steady state error without
affecting the stability of the control system.
Proportional Integral Derivative (PID) Controller

The proportional integral derivative controller produces an output, which is the combination

of the outputs of proportional, integral and derivative controllers.
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de(t)
dt

u(t) = Kpe(t) + KI/ e(t)dt + Kp
Apply Laplace transform on both sides -
K

U(s) = (KP + =L+ KDS) E(s)
5

Uls)
E(s)

K
—Kp+—L +Kps
5

Therefore, the transfer function of the proportional integral derivative controller
is Kp+ % + Kps.

The block diagram of the unity negative feedback closed loop control system along with the
proportional integral derivative controller is shown in the following figure.

R(s) +< E(s) = U(s) C(s)
Kp+—+KpsS |—»| G(S) }—a—

)
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TRANSFER FUNCTION REPRESENTATION

Block Diagrams

Block diagrams consist of a single block or a combination of blocks. These are used to represent

the control systems in pictorial form.

Basic Elements of Block Diagram

The basic elements of a block diagram are a block, the summing point and the take-off point.

Let us consider the block diagram of a closed loop control system as shown in the following

figure to identify these elements.

Summing point

Take-off point

N

e 3 G(s)

C(s)

1 »

H(s)

The above block diagram consists of two blocks having transfer functions G(s) and H(s). It

is also having one summing point and one take-off point. Arrows indicate the direction of the

flow of signals. Let us now discuss these elements one by one.

Block

14
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The transfer function of a component is represented by a block. Block has single input and
single output.

The following figure shows a block having input X(s), output Y(s) and the transfer function G(s).

Y
X G &)

Transfer Function, G(s) =

Summing Point

The summing point is represented with a circle having cross (X) inside it. It has two or more
inputs and single output. It produces the algebraic sum of the inputs. It also performs the
summation or subtraction or combination of summation and subtraction of the inputs based on

the polarity of the inputs. Let us see these three operations one by one.

The following figure shows the summing point with two inputs (A, B) and one output (Y). Here,
the inputs A and B have a positive sign. So, the summing point produces the output, Y as sum of
AandBi.e. = A +B.

B

The following figure shows the summing point with two inputs (A, B) and one output (Y). Here, the
inputs A and B are having opposite signs, i.e., A is having positive sign and B is having negative sign. So,
the summing point produces the output Y as the difference of AandBi.eY=A+(-B) = A-B.

15
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B

The following figure shows the summing point with three inputs (A, B, C) and one output (Y).
Here, the inputs A and B are having positive signs and C is having a negative sign. So, the
summing point produces the output Y as

Y=A+B+(-C)=A+B-C.

Take-off Point

The take-off point is a point from which the same input signal can be passed through more than
one branch. That means with the help of take-off point, we can apply the same input to one or

more blocks, summing points.In the following figure, the take-off point is used to connect the
same input, R(s) to two more blocks.

16
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Take-off point

J o G.(s) e
G () S
C.(s)

> G.(s) >

In the following figure, the take-off point is used to connect the output C(s), as one of the

inputs to the summing point.

R(s) +

Take-off point

G(s)

_\/C(s)
=

Block diagram algebra is nothing but the algebra involved with the basic elements of the block

diagram. This algebra deals with the pictorial representation of algebraic equations.

Basic Connections for Blocks

There are three basic types of connections between two blocks.

Series Connection

Series connection is also called cascade connection. In the following figure, two blocks having

transfer functions G1(s)G1(s) and G2(s)G2(s) are connected in series.

17
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X(s) Z(s) Y(s)
_ G,(s) ——% G,(s) p———>

For this combination, we will get the cutput ¥Y(s) as

Y(s) = Ga(s)Z(s)
Where, Z(s) = G1(s)X(s)
= Y(s) = Ga(s)[G1(s) X(s)] = G1(s)G2(s) X(s)
= Y (s) = {G1(5)Ga(s) } X(s)

Compare this equation with the standard form of the output equation,

Yis) = G(s)X(s). where, (7(s) = G1(s5)Ga(s).

That means we can represent the series connection of two blocks with a single block. The

transfer function of this single block is the product of the transfer functions of those two blocks.
The equivalent block diagram is shown below.

X(s) Y(s)
—_—

G1(s)G2(s) =

Similarly, you can represent series connection of ‘n’ blocks with a single block. The transfer
function of this single block is the product of the transfer functions of all those ‘n’ blocks.

Parallel Connection

The blocks which are connected in parallel will have the same input. In the following figure, two

blocks having transfer functions G1(s)G1(s) and G2(s)G2(s) are connected in parallel. The
outputs of these two blocks are connected to the summing point.

18
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x(s) > Gl(s) Yl(s)
T Y(s)
S =
> G>(s) |
Y2(s)

Y(s) = Yi(s) + Ya(s)
Yi(s) = G1(s)X(s) and Ya(s) = Ga(s) X (s)

= Y(s) = G1(s)X(s) + Ga(s) X(s) = {G(s) + Ga(s)} X(s)
G(s) = Gi(s) + Gals).

That means we can represent the parallel connection of two blocks with a single block. The
transfer function of this single block is the sum of the transfer functions of those two blocks.
The equivalent block diagram is shown below.

X(s) Y(s)
— G,(s) + G5 (s) b—>

Similarly, you can represent parallel connection of ‘n” blocks with a single block. The transfer

function of this single block is the algebraic sum of the transfer functions of all those ‘n” blocks.

Feedback Connection
As we discussed in previous chapters, there are two types of feedback — positive feedback and

negative feedback. The following figure shows negative feedback control system. Here, two

blocks having transfer functions G(s)G(s) and H(s)H(s) form a closed loop.

19
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X(s) + E(s) G(s) Y(ﬂ

H(s)

The output of the summing point is -
E(s) = X(s) — H(s)Y (s)
The output Y(s) is -
Y(s) = E(s)G(s)
Substitute E(s) value in the above equation.
Y(s) = {X(s) — H(s)Y(5)}G(s5)}
Y(s) {1+ G(s)H(s)} = X(s)G(s)}

_Y() _ G(s)
X(s) 1+ G(s)H(s)

Therefore, the negative feedback closed loop transfer function is :
G| 5)
1+G(s)H(s)

This means we can represent the negative feedback connection of two blocks with a single block.
The transfer function of this single block is the closed loop transfer function of the negative

feedback. The equivalent block diagram is shown below.

X(s) G(s) Y(s)
—_ —~

1+ G(s)H(s)
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Similarly, you can represent the positive feedback connection of two blocks with a single block.
The transfer function of this single block is the closed loop transfer function of the positive
feedback, i.e.,

Block Diagram Algebra for Summing Points

There are two possibilities of shifting summing points with respect to blocks -

¢ Shifting summing point after the block

¢ Shifting summing point before the block
Let us now see what kind of arrangements need to be done in the above two cases one by
one.
Shifting the Summing Point before a Block to after a Block

Consider the block diagram shown in the following figure. Here, the summing point is present
before the block.

R R X
(s) + (s)+X(s) J &) Y(ﬂ

-

X(s)

Summing point has two inputs R(s) and X(s)
The output of Summing point is {R(s) + X(s)}
So, the input to the block G(s) is {R(s) + X(s)} and the output of it is -
Y(s) = G(s) {R(s) + X(s)}

= Y{(s) = G(s)R(s) + G(s)X(s) (Equation 1)
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R(s) G(s)R(s) + Y(s)
— 5 G(s) & 2
+
X(s)
Output of the block G(s) is G(s)R(s).
The output of the summing point is
Y(s) = G(s)R(s) + X(s) (Equation 2)

Compare Equation 1 and Equation 2.

The first term ‘G(s)R(s)"“G(s)R(s)" is same in both the equations. But, there is difference in the
second term. In order to get the second term also same, we require one more block G(s)G(s). It
is having the input X(s)X(s) and the output of this block is given as input to summing point instead
of X(s)X(s). This block diagram is shown in the following figure.

R(s) G(s)R(s) + Y(s)
—_— G(s) > >
=)
G(s)X(s)
G(s)
X(s)

Shifting Summing Point Before the Block

Consider the block diagram shown in the following figure. Here, the summing
point is present after the block.

R(s) G(s)R(s) -t Y(s)

_ G(s) —>

—+

X(s)

22
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Qutput of this block diagram is -
Y(s) = G(s)R(s) + X(s) (Equation 3)

Now, shift the summing point before the block. This block diagram is shown in
the following figure.

R R X
(s) + (s)+X(s) d &m) Y(S)’

ult

X(s)
Qutput of this block diagram is -
Y(S) = G(s)R(s) + G(s) X (s) (Equation 4)

Compare Equation 3 and Equation 4,

The first term ‘G(s)R(s)’ is same in both equations. But, there is difference in the second term.
In order to get the second term also same, we require one more block 1/G(s). It is having the
input X(s) and the output of this block is given as input to summing point instead of X(s). This
block diagram is shown in the following figure.

R(s) +{—=} X(s)
R(s) + G} X — ¥(s)
_|_
1
G(s)
X(s)
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BlockDiagram AlgebraforTake-off Points

There are two possibilities of shifting the take-off points with respect to blocks -

o Shifting take-off point after the block
o Shifting take-off point before the block

Let us now see what kind of arrangements is to be done in the above two cases, one by one.

Shifting a Take-off Point form a Position before a Block to a position after the Block

Consider the block diagram shown in the following figure. In this case, the take-off point is

present before the block.

Ris) »| G(s) visl

X(s)

Here, X(s) = R(s) and Y(s) = G(s)R(s)

When you shift the take-off point after the block, the output Y(s) will be same. But, there is
difference in X(s) value. So, in order to get the same X(s) value, we require one more block
1/G(s). It is having the input Y(s) and the output is X(s) this block diagram is shown in the

following figure.

R(s) Y(s)
—_—>| G(s) I —5
1
G(s)
X(s)
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Shifting Take-off Point from a Position after a Block to a position before the Block

Consider the block diagram shown in the following figure. Here, the take-off point is present
after the block.

R(s) Y(s)
—»| G(s) =

X(s)
Here, X(s) = Y(s) = G(s)R(s)

When you shift the take-off point before the block, the output Y(s) will be same. But, there is
difference in X(s) value. So, in order to get same X(s) value, we require one more block G(s) It is
having the input R(s) and the output is X(s). This block diagram is shown in the following figure.

() 1 »| G(s) b d
G(s)
X(s)

The concepts discussed in the previous chapter are helpful for reducing (simplifying) the block
diagrams.

Block Diagram Reduction Rules

Follow these rules for simplifying (reducing) the block diagram, which is having many blocks,
summing points and take-off points.

e Rule 1 - Check for the blocks connected in series and simplify.

¢ Rule 2 - Check for the blocks connected in parallel and simplify.
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Rule 3 - Check for the blocks connected in feedback loop and simplify.

Rule 4 - If there is difficulty with take-off point while simplifying, shift it towards right.

Rule 5 - If there is difficulty with summing point while simplifying, shift it towards left.
e Rule 6 - Repeat the above steps till you get the simplified form, i.e., single block.

Note - The transfer function present in this single block is the transfer function of the overall
block diagram.
Example

Consider the block diagram shown in the following figure. Let us simplify (reduce) this block

diagram using the block diagram reduction rules.

H;le

R(s) ~ + o+
+ ' + | g
. Y(s)
H,|e—

H, |«

Step 1 — Use Rule 1 for blocks G171 and Ga. Use Rule 2 for blocks Ga3 and Gy.
The modified block diagram is shown in the following figure.

e G3 + Gy
+ —_ Y(s
o (s)
f [H.]e-
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Step 2 — Use Rule 3 for blocks G1G4a and Hy . Use Rule 4 for shifting take-off
point after the block G§g. The maodified block diagram is shown in the following

figure.
[ H
R(s) G416 X
> St > 63 + G-l» Gs
-+ 1+ Glczﬂl
)

H;

Y(s)

Gs

Step 3 — Use Rule 1 for blocks (G3 + G4) and Gg. The modified block diagram

is shown in the following figure.

GG

[ ]

RE

G

»(G3 + G4)Gs

Y(s)

—

<

Step 4 — Use Rule 3 for blocks (Ga + G4)Gs and Hi. The modified block

diagram is shown in the following figure.

G162

(G3 + G4)G5

Y(s)

131G, G1Ty

1+ (G3 +G4)GsH3

H>

Gs

<

Step 5 — Use Rule 1 for blocks connected in series. The modified block diagram

is shown in the following figure.
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R(S)® GGG 6D Y(s)
D
e (1+G1G2H){1+ (G3 + G4)GsH3}
g
H, .
Gs

Step 6 — Use Rule 3 for blocks connected in feedback loop. The modified block
diagram is shown in the following figure. This is the simplified block diagram.

Y(s)

R(s) G1G, G5 (G5 + G,) =

GGl I+ Gy + G bl e — 816G Gy - G s

Therefore, the transfer function of the system is

Y (s) (;'1GQG§(G3 + Gy)

R(S) o (1 ~+- G]_GzHl){l -+- (G:; —+- G4)G5H3}G5 — GIGQG’S(G’;, -4~ G4)H2

Note - Follow these steps in order to calculate the transfer function of the block diagram

having multiple inputs.

e Step 1 - Find the transfer function of block diagram by considering one input at a time

and make the remaining inputs as zero.
e Step 2 - Repeat step 1 for remaining inputs.
o Step 3 - Get the overall transfer function by adding all those transfer functions.

The block diagram reduction process takes more time for complicated systems because; we
have to draw the (partially simplified) block diagram after each step. So, to overcome this

drawback, use signal flow graphs (representation).
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4 Block Diagram Reduction- Summary

Automatic control

Xl(.\') X, (s) X(s) X(s)
—d G(S5) X(s)
X(s)
X (s) = G(S)XI(.t)
(a) X (5) = X (5) =Xs5(s5) + X;(5) - Xy4(5) (¢)
. 5 1 2 3 - . c) .
block pickoff point
(b) summer
X(s) G (s)X(s) G\ (5)Gy(5)X(s)
— G5 > Gyls) > (T —> G(5)G,(s) —
(a)
G (s)X(s)
> Gl(.\’)
X(s) *+ G(s) = Go(s)
I <:> — G (5) 2 Gs5)
- G,(s)
Gy(s)X(s)
(b)
Anromaric control
R(s) + E(s) ¥(s) G
- :D (s} >
G - < I's Gls)H(s)
H{s)Y(5)
His) |

Y(s) = G(s)E(s)
E(s)=R(z)X H(z)F(s)
Y(s)=G(s)R(s)E H(s)Y(5)] = G(s)R(s)+ G(s)H (s)Y (s)

Fsy_ T G
R(s) 1FG(s)H(s)
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= — 1
a) Insertion or removal of unity gain
-{F— <‘_“> — '
(b) Changing a summer sign
X(s X(
;‘ Gy(s) (16 I . <::> © Gy(s) ) |y
G(s) [
G\(5)X(s) Gy (s)X(s)
(¢) Moving a pickoff point back
0 6 6 L =y 2L 6o | 6 :
. [
Gi(5)X(s rYE e

(d) Moving a pickoff point forward
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=

(f) Combining or expanding junctions

X,(s)
X\ () = Xy(s) et X(5) = Xy(s)
(g) Moving a pickoff point behind a summation
Xy(s) Xy(s) ~ Xy(s)

>

X](S)

+

X (s) — Xy(s)

+/ 7\ B
X > > Xi(s) =——{ J—to
I(s) -Y |(S) \ Xl(s) = Xz(s)

|
X5(s) Xy(s)

(h) Moving a pickoff point forward of a summation

Example-1:
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s Y(s)

Y

|

s2+s5+4

Y(s)

Y(s)

R(s) .7

552 + 125

Y(s)

(65 + 14)(s%2 + 5 + 4)

R(s)

s+3

&

552+ 125
(65 + 14)(s2 + 5 + 4)

1

s (552 +125)(3)
(65 + 14)(s2 + 5 + 4)(s + 3)

553 + 2752 + 36s

= 657 + 3853 + 11352 + 2065 + 168

Y(s)
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R, (s) < 77\ o o Y, (s) _
IT T s+2 F NS -
3 1
Ty1(5) (s+2) (E)
$)=
. R, (s) =t 1+( 3 ) i Y5(5)
s+2 (E)
_ 3
T 242543
(a)
Ry(s)
R()=0 _ | 3 - o 1 | 2O _
-ET T os+2 T N s -
— K > —1 . 1 Y2()
> - ot s i
+
3 50 -
s+2 | 1
e )
. R (s) e - Yy(s)
L= (E) =1 (s+2)
. —=s=2
T s24+25+3

(©)]
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Signal flow graph is a graphical representation of algebraic equations. In this chapter, let us

discuss the basic concepts related signal flow graph and also learn how to draw signal flow

graphs.

Basic Elements of Signal Flow Graph

Nodes and branches are the basic elements of signal flow graph.

Node

Node is a point which represents either a variable or a signal. There are three types of nodes
— input node, output node and mixed node.

e Input Node - It is a node, which has only outgoing branches.
e Output Node - It is a node, which has only incoming branches.

e Mixed Node - It is a node, which has both incoming and outgoing branches.

Example

Let us consider the following signal flow graph to identify these nodes.

a b c

— —> =5 ®

Y1 Y2 Y3 Y4

-d

4 The nodes present in this signal low graph are yq, ¥o, ¥3 and y4.
4 yq and y4 are the input node and output node respectively.

9 ¥o and yq are mixed nodes.

Branch
Branch is a line segment which joins two nodes. It has both gain and direction. For example,
there are four branches in the above signal flow graph. These branches have gains of a, b,

cand -d.
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Construction of Signal Flow Graph

Let us construct a signal flow graph by considering the following algebraic equations -

Y2 = aiay1 + a4y
Y3 = a2l + asays
Y4 = Q@34Ys
Y5 = @45l4 + A35Y3
Yo = Qsels

There will be six nodes (v, vo, v3, ¥4, ¥g and vg) and eight branches in this
signal flow graph. The gains of the branches are aqs, a3, 834, 845, 9cg, 42, 853

and asg.

To get the overall signal flow graph, draw the signal flow graph for each
equation, then combine all these signal flow graphs and then follow the steps
given below —

Step 1 — Signal flow graph for ¥y = a1ay1 + @49y is shown in the following

figure.
X2
< —- s = °
B Y= b < Ya ¥s Ye
Xa2
Step 2 — Signal flow graph for yas — as3ys + asays is shown in the following
figure.
azs3
e - ) S PS
i Y= Y3 YVa ¥s Ye
ass
Step 3 — Signal flow graph for 4 — aasqya is shown in the following figure.
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a3y
® ® & ) ® ® ®

Y1 Y2 Y3 Ya Ys Ye

Step 4 — Signal flow graph for ys = a45y4 + aasys is shown in the following
figure.

aszs

Y1 Y2 Y3 Ya % i Y6

Step 5 — Signal flow graph for yg = agsys is shown in the following figure.

Qs

o ® ® ® e—.

Y1 Y2 Y3 Ya 3 4= Ye

Step 6 — Signal flow graph of overall system is shown in the following figure.
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Conversion of Block Diagrams into Signal Flow Graphs

Follow these steps for converting a block diagram into its equivalent signal flow graph.

e Represent all the signals, variables, summing points and take-off points of block diagram
as nodes in signal flow graph.

o Represent the blocks of block diagram as branches in signal flow graph.

e Represent the transfer functions inside the blocks of block diagram asgains of the
branches in signal flow graph.

e Connect the nodes as per the block diagram. If there is connection between two nodes
(but there is no block in between), then represent the gain of the branch as one. For
example, between summing points, between summing point and takeoff point, between

input and summing point, between take-off point and output.

Example

Let us convert the following block diagram into its equivalent signal flow graph.

R(S) 2 + 2 — [
5 >
A Y(s)

Represent the input signal R(s) and output signal C(s) of block diagram as input node R(s) and
output node C(s) of signal flow graph.

Just for reference, the remaining nodes (y1 to ys) are labelled in the block diagram. There are
nine nodes other than input and output nodes. That is four nodes for four summing points, four

nodes for four take-off points and one node for the variable between blocks Giand G..
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The following figure shows the equivalent signal flow graph.

H,

Let us now discuss the Mason’s Gain Formula. Suppose there are ‘N’ forward paths in a signal
flow graph. The gain between the input and the output nodes of a signal flow graph is nothing
but the transfer function of the system. It can be calculated by using Mason’s gain formula.

Mason’s gain formula is

_ C(s) _ =N, PA,

=R = A

Where,

C(s) is the output node

e R(s) is the input node
« T is the transfer function or gain between R(S) and C(5S)
e Pi is the it forward path gain

A=1-(sum of all individual loop gains) +(sum of gain products of all possible two
nontouching loops)—-(sum of gain products of all possible three nontouching loops) +....

A\ is obtained from A by removing the loops which are touching the it forward path.
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Consider the following signal flow graph in order to understand the basic terminology involved
here.

Path

Itis a traversal of branches from one node to any other node in the direction of
branch arrows, It should not traverse any node more than once,

Examples —y2 — y3 — Y4 — Y5 and ys — Y3 — 2
Forward Path

The path that exists from the input node to the output node is known as
forward path.

Examples —y1 — Y2 = ¥Ys = Y4 = ¥s — Y and Y1 — Y2 — Y3 — Y5 — Ys.
Forward Path Gain

It is obtained by calculating the product of all branch gains of the forward path.
Examples — abede is the forward path gain of 4y — y9 — ya — ¥4 — ¥5 — e

and abge is the forward path gain ofy; — y2 — 3 — Y5 — s

Loop

The path that starts from one node and ends at the same node is known as a loop. Hence, it is
a closed path.
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Examples —ys — y3 — 4o and ys — Y5 — V3.
Loop Gain
It is obtained by calculating the product of all branch gains of a loop.

Examples — bj is the loop gain of ya — ya — y2 and g is the loop gain of
Ya — Y5 — Ya.

Non-touching Loops

These are the loops, which should not have any common node,

Examples — The loops, 49 — ya — Y2 and yy — Y5 — Y4 are non-touching.

Calculation of Transfer Function using Mason’s
Gain Formula

Let us consider the same signal flow graph for finding transfer function.

g

e Number of forward paths, N = 2.

o First forward path is - Y1—y2—Yy3—Yy4—Yy5—Y6.

« First forward path gain, p1=abcde

e Second forward path is - Y1—y2—y3—y5—Yy6

« Second forward path gain, p2=abge

e Number of individual loops, L = 5.
Loops are - Y2 —¥Ys — Y2, Y3 —Ys — Y3, Y3~ Y4 —Ys — U3,
Yo = Ys — Yg and ys — Y5

Loop gains are - Iy = bj, Iy = gh, ly =ecdh, ly =diand Iy = f.

e Number of two non-touching loops = 2.
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o First non-touching loops pair is - Y2—y3—Yy2, Y4—y5—V4,

« Gain product of first non-touching loops pair l1l4=bjdi

e Second non-touching loops pair is - y2—y3—Yy2, Y5—Y5.

« Gain product of second non-touching loops pair is l1l5=bjf
Higher number of (more than two) non-touching loops are not present in this signal flow
graph.We know,

a

< > -

Y Ye
Number of forward paths, N = 2.

2 First forward path is - y1 — Y2 — Y3 — Y4 —> Ys —> Ye .
First forward path gain, p;1 = abecde.
Second forward path is -y — Y2 — Y3 — Ys — Ys.
Second forward path gain, pa = abge.
Number of individual loops, L = 5.

' Loops are - ya —Ya VY2, Y3~ Y¥s —Ya, Ya Y4 Ys — Va,

Ys = Ys — Y4 andys — Ys.
5 Loop gains are - I = b7, la = gh, Iy = edh, Iy =di andly = f.
= mMumber of two non-touching loops = 2.
= First non-touching loops pair is - 4a — Y — Yo, Y4 — Ys — Y4
=2 Gain product of first non-touching loops pair, I 1y = bjdi
= Second non-touching loops pair is - Yya — Y3 — Y2, ¥Ys — Ys.
=2 Gain product of second non-touching loops pair is - I1ly = bjf

Higher number of (more than twao) non-touching loops are not present in this

signal flow graph.
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We know,

A =1— (sum of all individual loop gains)
+(sum of gain products of all possible two nontouching loops)
—(sum of gain products of all possible three nontouching loops)+. ..

Substitute the values in the above equation,
A=1—(bj+gh+edh+di+ f)+ (bjdi +bjf) — (0)

= A =1— (bj+gh +cdh +di + ) + bjdi + bjf

There is no loop which is non-touching to the first forward path.

SO.. .&1 = 1.
Similarly, &9 = 1. Since, no lcop which is non-touching to the second forward
path.

Substitute, N = 2 in Mason's gain formula

_ C(s) _ Z2,RA

=R A

o C'(s) o PiAy + Pafa

T=%e ~ A

Substitute all the necessary values in the abowve equation.

T C'(s) (abede)l + (abge)l
- R(s) 1— (bj+gh+edh +di+ f)+ bjdi +bjf
o C(s) (abede) + (abge)

" R(s) 1— (bj+gh+cdh+di—+ f)+ bjdi + bjf
Therefore, the transfer function is -

T Cls) (abede) + (abge)
" R(s) 1— (bj+gh+edh+di+ f)+bjdi +bjf
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Example-1:

T(s)= Zpkﬁk
A

o B=GGGG, A;=1 There1sno P, or A, or more.

* ) L=-GG,H +GGH-GGH,

o ) L,=GGGGHH,

o A=1-) L+ I,=14GG\H, -GG H,+GGH,+GGGGHH,
N'PA GG,GG

o T(t)==—-= o
, A +GG,H, -G,GH,+GG,H,+GG,GG,HH,
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Example-2:
0
Rs) —-
Ml = GIG!Gj G'1 GI.:G;'G:Gs 'ﬁl =].
M: = GlG.o'Gs ﬂ: = 1_[_G4Hl 'Go'H4 'GsG4G4Gde 'G4G=Go'H:]+ G4H166H4

= 146 H+GH, +GGGGH +GGGH +GHGH
h=1-|-GH -GH -GGG GH -GGGH -GH|
{GHGH, +GHGH,+G.H GH, +GHGGGH. +GHGGGGH,
16 HGHGH,
h=1+GH +GH +G GGG H +GGGH, +CH
16 HGH + G HGH +C HGH +GHGCGGH +GHGGGGH,

+GHGHGH,
TS_mﬂ_MA+MA_QQQQQQG@+QQGﬂ+Q&+Q&+QQGQ&+QGQ&+qu&]
R A A
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Example-3:

M, = G,G,G;G, A =1

M, =G, A, =1
M, =-1 A, =1+G,

a
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MODULE-4
Stability of linear control systems

Stability is an important concept. In this chapter, let us discuss the stability of system and
types of systems based on stability.

What is Stability?

A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable.
A stable system produces a bounded output for a given bounded input.

The following figure shows the response of a stable system.

c(t)
A

>
0 t

This is the response of first order control system for unit step input. This response has the values
between 0 and 1. So, it is bounded output. We know that the unit step signal has the value of
one for all positive values of t including zero. So, it is bounded input. Therefore, the first order
control system is stable since both the input and the output are bounded.
Types of Systems based on Stability

We can classify the systems based on stability as follows.

e Absolutely stable system
e Conditionally stable system

e Marginally stable system
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Absolutely Stable System

If the system is stable for all the range of system component values, then it is known as
the absolutely stable system. The open loop control system is absolutely stable if all the poles
of the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed loop
control system is absolutely stable if all the poles of the closed loop transfer function present
in the left half of the ‘s’ plane.

Conditionally Stable System

If the system is stable for a certain range of system component values, then it is known

as conditionally stable system.

Marginally Stable System

If the system is stable by producing an output signal with constant amplitude and constant
frequency of oscillations for bounded input, then it is known as marginally stable system. The
open loop control system is marginally stable if any two poles of the open loop transfer function
is present on the imaginary axis. Similarly, the closed loop control system is marginally stable if
any two poles of the closed loop transfer function is present on the imaginary axis.

n this chapter, let us discuss the stability analysis in the ‘s’ domain using the RouthHurwitz
stability criterion. In this criterion, we require the characteristic equation to find the stability of

the closed loop control systems.

Routh-Hurwitz Stability Criterion

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient condition
for stability. If any control system doesn’t satisfy the necessary condition, then we can say that
the control system is unstable. But, if the control system satisfies the necessary condition, then
it may or may not be stable. So, the sufficient condition is helpful for knowing whether the

control system is stable or not.

Necessary Condition for Routh-Hurwitz Stability

The necessary condition is that the coefficients of the characteristic polynomial should be
positive. This implies that all the roots of the characteristic equation should have negative real

parts.

Consider the characteristic equation of the order ‘n’ is -
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aps” +a;s™ ! tas" .. dan_15" +aps’ =0

Note that, there should not be any term missing in the nt order characteristic equation. This
means that the n™ order characteristic equation should not have any coefficient that is of zero

value.

Sufficient Condition for Routh-Hurwitz Stability

The sufficient condition is that all the elements of the first column of the Routh array should
have the same sign. This means that all the elements of the first column of the Routh array
should be either positive or negative.

Routh Array Method

If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then the control
system is stable. If at least one root of the characteristic equation exists to the righthalf of
the ‘s’ plane, then the control system is unstable. So, we have to find the roots of the
characteristic equation to know whether the control system is stable or unstable. But, it is
difficult to find the roots of the characteristic equation as order increases.

So, to overcome this problem there we have the Routh array method. In this method, there is
no need to calculate the roots of the characteristic equation. First formulate the Routh table
and find the number of the sign changes in the first column of the Routh table. The number of
sign changes in the first column of the Routh table gives the number of roots of characteristic

equation that exist in the right half of the ‘s’ plane and the control system is unstable.
Follow this procedure for forming the Routh table.

o Fill the first two rows of the Routh array with the coefficients of the characteristic
polynomial as mentioned in the table below. Start with the coefficient of sn and continue
up to the coefficient of sO.

o Fill the remaining rows of the Routh array with the elements as mentioned in the table
below. Continue this process till you get the first column element of row s0s0 is an. Here,
an is the coefficient of sO in the characteristic polynomial.

Note - If any row elements of the Routh table have some common factor, then you can divide

the row elements with that factor for the simplification will be easy.

The following table shows the Routh array of the n™ order characteristic polynomial.
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ags” +a15” L +ags” i tan_15° +ans’

s" ap a9 a4 ag
sl ay as ag ay
s 2 by ba by
_ fiza—flgdy _ Ry —fl5dy _ flg—fvidg
- 2y - 2y - 2y
s e Cg
. biﬂg—bgﬂi . biﬂEE—bgﬂi
- by - by
51
s? Qg
Example

Let us find the stability of the control system having characteristic equation,

544—3534—3524—254—1:!}

Step 1 - Verify the necessary condition for the Routh-Hurwitz stability.

All the coefficients of the characteristic polynomial,

st +3s% +3s2 +25+1 . o
are positive. So, the control system satisfies the necessary

condition.

Step 2 - Form the Routh array for the given characteristic polynomial.
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st 1 3 1
s* 3 2
52 (3x3)—(2x1) 7 (3x1)—(0x1) 3
3 3 3 T3
=1
st (%xﬂ)—(lei)
i
a
]
|
s° 1

Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.

All the elements of the first column of the Routh array are positive. There is no sign change in

the first column of the Routh array. So, the control system is stable.

Special Cases of Routh Array

We may come across two types of situations, while forming the Routh table. It is difficult to

complete the Routh table from these two situations.

The two special cases are -

e The first element of any row of the Routh’s array is zero.
e Allthe elements of any row of the Routh’s array are zero.

Let us now discuss how to overcome the difficulty in these two cases, one by one.

First Element of any row of the Routh’s array is zero

If any row of the Routh’s array contains only the first element as zero and at least one of the
remaining elements have non-zero value, then replace the first element with a small positive
integer, €. And then continue the process of completing the Routh’s table. Now, find the number

of sign changes in the first column of the Routh’s table by substituting ee tends tozero.
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Example

Let us find the stability of the control system having characteristic equation,

s 125 £52 125 41=0

Step 1 - Verify the necessary condition for the Routh-Hurwitz stability.

All the coefficients of the characteristic polynomial,
st 4258 +s2+25+1=0
are positive. So, the control system satisfied the
necessary condition.

Step 2 - Form the Routh array for the given characteristic polynomial.

5 1 ! '
3 o 21

g2 w:ﬂ wzl

51

SD

The row s3 elements have 2 as the common factor. So, all these elements are divided by 2.
Special case (i) - Only the first element of row s? is zero. So, replace it by € and continue the

process of completing the Routh table.

88



BRINDAVAN COLLEGE OF ENGINEERING DEPT. OF ME

54 1 1 1
53 1 1
52 € 1
sl (ex1)=(1x1) _ et
: :
s? 1

Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.

As € tends to zero, the Routh table becomes like this.

st 1 1 1
s 1 1

2 0 1

st -Co

s? 1

There are two sign changes in the first column of Routh table. Hence, the control system is

unstable.

All the Elements of any row of the Routh’s array are zero

In this case, follow these two steps -
e Write the auxilary equation, A(s) of the row, which is just above the row of zeros.

o Differentiate the auxiliary equation, A(s) with respect to s. Fill the row of zeros with

these coefficients.
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Example

Let us find the stability of the control system having characteristic equation,
s° +35" +5° +35 +54+3=0

Step 1 - Verify the necessary condition for the Routh-Hurwitz stability.

All the coefficients of the given characteristic polynomial are positive. So, the control system
satisfied the necessary condition.

Step 2 - Form the Routh array for the given characteristic polynomial.

st 21 21 =1

3 (1=1)—(1x1) 0 (1x1)—(1x1)

1 1 =0

The row s* elements have the common factor of 3. S0, all these elements are
divided by 3.

3

Special case (i) — All the elements of row 87 are zero, So, write the auxiliary

equation, Als) of the row st

A(s) =s* +52 +1
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dA(s
J — 45% + 2s
ds
Place these coefficients in row s> .
s° 1 1 1
st 1 1 1
s 472 21
52 (Exljgilxlj — 0.5 (Exljgiﬂxlj —1
sl (0.6x1)—(1x2) 15
0.5 — 05
= -3
5! 1

Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.

There are two sign changes in the first column of Routh table. Hence, the control system is

unstable.

In the Routh-Hurwitz stability criterion, we can know whether the closed loop poles are in on
left half of the ‘s’ plane or on the right half of the ‘s’ plane or on an imaginary axis. So, we can’t
find the nature of the control system. To overcome this limitation, there is a technique known

as the root locus.
Root locus Technique

In the root locus diagram, we can observe the path of the closed loop poles. Hence, we can
identify the nature of the control system. In this technique, we will use an open loop transfer

function to know the stability of the closed loop control system.
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Basics of RootLocus

The Root locus is the locus of the roots of the characteristic equation by varying system gain K

from zero to infinity.

We know that, the characteristic equation of the closed loop control system is

1+ G(s)H(s) =0

We can represent G(s)H(s) as

Where,
2 K represents the multiplving factor

MNi(s) represents the numerator term  hawving (factored) nth

order
polynomial of ‘s’

- Dis) represents the denominator term having (factored) mth order
polynomial of ‘s’

Substitute, G(s)H(s) value in the characteristic equation,

N(s)

1+k =
D)

= D(s) + KN(s) =10
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Case 1 - K=0

If K =0, then D(s) = 0.

That means, the closed loop poles are equal to open loop poles when K is zero,
Case 2 — K=

Re-write the above characteristic equation as

1  N(s) 1 N{s)
K| — =0= — =0
(K+D{s}) “ K D)
Substitute, i = oo in the abowve equation.
1 N(s) N (s) ,
~ "De T D 0T NG)

If K = oo, then N(s) = 0. It means the closed loop poles are equal to the open
loop zeros when K is infinity,

From above two cases, we can conclude that the root locus branches start at open loop poles
and end at open loop zeros.

Angle Condition and Magnitude Condition

The points on the root locus branches satisfy the angle condition. So, the angle condition is used
to know whether the point exist on root locus branch or not. We can find the value of K for the
points on the root locus branches by using magnitude condition. So, we can use the magnitude
condition for the points, and this satisfies the angle condition.

Characteristic equation of closed loop control system is
1+ G(s)H(s) = 0
> G(s)H (s) —1 + 70

The phase angle of G(s)H (s) is

ZG(s)H(s) — tan 1 (:—'1) = (272 + 1)

The angle condition is the point at which the angle of the open loop transfer function is an odd
multiple of 180°.
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Magnitude of G(s)H(s)G(s)H(s) is —
IG()H(s)| = /(-1)? + 0% =1

The magnitude condition is that the point (which satisfied the angle condition) at which the
magnitude of the open loop transfer function is one.

The root locus is a graphical representation in s-domain and it is symmetrical about the real axis.
Because the open loop poles and zeros exist in the s-domain having the values either as real or

as complex conjugate pairs. In this chapter, let us discuss how to construct (draw) the root locus.

Rulesfor Construction of Root Locus

Follow these rules for constructing a root locus.
Rule 1 - Locate the open loop poles and zeros in the’s’ plane.
Rule 2 - Find the number of root locus branches.

We know that the root locus branches start at the open loop poles and end at open loop zeros.
So, the number of root locus branches N is equal to the number of finite open loop poles P or

the number of finite open loop zeros Z, whichever is greater.
Mathematically, we can write the number of root locus branches N as

N=P if P>Z
N=Z if P<Z

Rule 3 - Identify and draw the real axis root locus branches.

If the angle of the open loop transfer function at a point is an odd multiple of 180°, then that
point is on the root locus. If odd number of the open loop poles and zeros exist to the left side
of a point on the real axis, then that point is on the root locus branch. Therefore, the branch of

points which satisfies this condition is the real axis of the root locus branch.
Rule 4 - Find the centroid and the angle of asymptotes.

o If P=Z, then all the root locus branches start at finite open loop poles and end at finite
open loop zeros.

o If P>Z, then Z number of root locus branches start at finite open loop poles and end at
finite open loop zeros and P-Z number of root locus branches start at finite open loop

poles and end at infinite open loop zeros.
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e If P<Z, then P number of root locus branches start at finite open loop poles and end at
finite open loop zeros and Z-P number of root locus branches start at infinite open loop
poles and end at finite open loop zeros.

So, some of the root locus branches approach infinity, when P#Z. Asymptotes give the direction
of these root locus branches. The intersection point of asymptotes on the real axis is known as
centroid.

We can calculate the centroid a by using this formula,

. %" Real part of finite open loop poles —% . Real part of finite open loop zeros
- P-Z

The formula for the angle of asymptotes O is

(2g +1)180°

# =
P—-Z

Where,

Rule 5 - Find the intersection points of root locus branches with an imaginary axis.

We can calculate the point at which the root locus branch intersects the imaginary axis and the

value of K at that point by using the Routh array method and special case (ii).

o If all elements of any row of the Routh array are zero, then the root locus branch

intersects the imaginary axis and vice-versa.

o Identify the row in such a way that if we make the first element as zero, then the

elements of the entire row are zero. Find the value of K for this combination.

e Substitute this K value in the auxiliary equation. You will get the intersection point of

the root locus branch with an imaginary axis.
Rule 6 - Find Break-away and Break-in points.

o |If there exists a real axis root locus branch between two open loop poles, then there

will be a break-away point in between these two open loop poles.
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o If there exists a real axis root locus branch between two open loop zeros, then there

will be a break-in point in between these two open loop zeros.
Note - Break-away and break-in points exist only on the real axis root locus branches.
Follow these steps to find break-away and break-in points.

e Write Kin terms of s from the characteristic equation 1+G(s)H(s)=0.

o Differentiate K with respect to s and make it equal to zero. Substitute these values
of ss in the above equation.

¢ The values of ss for which the K value is positive are the break points.

Rule 7 - Find the angle of departure and the angle of arrival.

The Angle of departure and the angle of arrival can be calculated at complex conjugate open
loop poles and complex conjugate open loop zeros respectively.

The formula for the angle of departure ¢qis
¢a = 180" — ¢

The formula for the angle of arrival ¢, is

ba = 180" + ¢
Wihere,
6= ép— > ¢z
Example
Let us now draw the root locus of the control system having open loop transfer
G(s\His) = — X
function, (s)H(s) s(s+1)(s+5)

Step 1 - The given open loop transfer function has three poles at s =0,
s =-1, s =-5. It doesn’t have any zero. Therefore, the number of root locus branches is equal

to the number of poles of the open loop transfer function.
N=P=3
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w
A
Root Locus Branch Root Locus Branch
vas > K >
-5 -1 g =

Not a Root Locus Branch

The three poles are located are shown in the above figure. The line segment between s=-1,and
s=0 is one branch of root locus on real axis. And the other branch of the root locus on the real
axis is the line segment to the left of s=-5.

Step 2 - We will get the values of the centroid and the angle of asymptotes by using the given

formulae.

Centroid
0= ﬁl]”, 180" and 3007,

The angle of asymptotes are

The centroid and three asymptotes are shown in the following figure.
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Asymptote with 60%angle -

Asymptote with 180%angle o

Asymptote with 300%angle \

Step 3 - Since two asymptotes have the angles of 600600 and 30003000, two root locus
branches intersect the imaginary axis. By using the Routh array meth(?g and special case(ii),
the root locus branches intersects the imaginary axis at _f«,fﬁ and A
There will be one break-away point on the real axis root locus branch between the poles s
=-1and s=0. By following the procedure given for the calculation of break-away point, we will
getitas s =-0.473.
The root locus diagram for the given control system is shown in the following figure.

e
= B

In this way, you can draw the root locus diagram of any control system and observe the

movement of poles of the closed loop transfer function.
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From the root locus diagrams, we can know the range of K values for different types of
damping.

Effects of Adding Open Loop Poles and Zeros on Root Locus

The root locus can be shifted in ‘s’ plane by adding the open loop poles and the open loop
zeros.

o If weinclude a pole in the open loop transfer function, then some of root locus branches
will move towards right half of ‘s’ plane. Because of this, the damping ratio 6
decreases. Which implies, damped frequency wd increases and the time domain
specifications like delay time td, rise time tr and peak time tp decrease. But, it effects
the system stability.

¢ If we include a zero in the open loop transfer function, then some of root locus branches
will move towards left half of ‘s’ plane. So, it will increase the control system stability. In
this case, the damping ratio & increases. Which implies, damped frequency wd
decreases and the time domain specifications like delay time td, rise time tr and peak
time tp increase.

So, based on the requirement, we can include (add) the open loop poles or zeros to the transfer
function.
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Example $¥ 4387 + 264K =0
S =]
— @ =30 +2jo+ K = (K- 30°) - jo@* —2)=0 ":\— ]\E
K=6
w =2
K=3w'=6 5 -1/ I
“ i A N i -
-0.423
N ]\/E
p
Example
P Two poles at —1
GH(s) = K(+2) One zero at -2
o (2+1)° One asymptote at 180°
' Break-in point at -3
2 1
p+1 p+2 K=> !
2p+4=p+1
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Example Why a circle ?
Characteristic equation g 4 5(2+K)+2K+1=0
For K=4 For K=4

i _2+K)+fK(K—-4
:—(E+I{)J_rj K(4-K) . (2+K) m
b

4

12

"

o —(-2+K)+jJK(4-K
Changeof origin s ,+2= ( 0) TrJ\/ﬁ

Am=(K-2 +KA-K)=K*-4K +4+4K -K"*

m=1

K=4
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MODULE-5
FREQUENCY RESPONSE ANALYSIS

Whatis Frequency Response?

The response of a system can be partitioned into both the transient response and the steady
state response. We can find the transient response by using Fourier integrals. The steady state

response of a system for an input sinusoidal signal is known as the frequency response. In this
chapter, we will focus only on the steady state response.

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it
produces the steady state output, which is also a sinusoidal signal. The input and output

sinusoidal signals have the same frequency, but different amplitudes and phase angles. Let the
input signal be

r(t) = Asin(wpt)
The open loop transfer function will be —
G(s) = G(jw)
We can represent G(jw) in terms of magnitude and phase as shown below,
G(jw) = |G (jw)| £ G (jw)
Substitute, w = wy in the abowve equation.
Gjuwy) = |Gljuwn )| £G(jwn)
The cutput signal is
c(t) = A[G(jwo)| sin(wot + LG (juwnp))

3 The amplitude of the output sinuscidal signal is obtained by multiplying

the amplitude of the input sinusoidal signal and the magnitude of G(jw)
at w = wy.

2 The phase of the output sinuscidal signal is obtained by adding the
phase of the input sinuscidal signal and the phase of G(jw) at w = wy .

Where,

e Aisthe amplitude of the input sinusoidal signal.
e Wois angular frequency of the input sinusoidal signal.

We can write, angular frequency wo as shown below.
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(.00=2T[fo

Here, fo is the frequency of the input sinusoidal signal. Similarly, you can follow the same
procedure for closed loop control system.

Frequency Domain Specifications

The frequency domain specifications are

e Resonant peak
e Resonant frequency
e Bandwidth.

Consider the transfer function of the second order closed control system as

C'(s) w2
R(s) 52 +2dw,s+w?

Substitute, § = jw in the above equation.

. wh
T(jw) = — 2de (7o) + 2
(Jeo)® + 20wy, (jw) + wiy
wi wy
T(qw) = L = =
= {_.'f':‘-'} 2 + 2_‘]'.51'.9"'-&-'11 -|-.f_¢% L:.-"E (1 _wf + @)
] 1
= T(jw) =

(-3 (%)

Let, & = u Substitute this value in the above equation.

1
(1 —u?) + j(2du)

T(jw) =

Magnitude of T'(jw) is -

1
V(1 —u?)? 4+ (2du)?

M = [T(jw)| =

Phase of T'(jw) is -
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Resonant Frequency

It is the frequency at which the magnitude of the frequency response has peal

walue for the first time. It is denoted by w, . At w = w,, the first derivate of the
magnitude of T'(jw) is zero.

Differentiate M with respect to u.

% = —%[{1 —u®)? + (26u)?] B [2(1 — w®)(—2u) + 2(26w)(24)]
= LA+ @) ¥ a1+ 267)]

Substitute, @ = w, and % == 0 in the above equation,

1 _a
0=—2[(1—ud)? + (20u,)?] "7 [dur(u} — 1+ 25%)]
= duy, (u2 — 1 +26%) =0
=ul—1+2§2=0

= ul =1 24°

= ur = /1 —26°

Substitute, u, = :—' in the above equation,

Resonant Peak

It is the peak (maximum) value of the magnitude of T(jw). It is denoted by M.
At U=Ur, the Magnitude of T(jw) is -

104



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT. OF ECE

1
V(1 —ud)? 4 (26u,)?

J.:'i-..l.rf -

Substitute, ©, = vV1 — 242 and 1 — u? = 242 in the above equation.
1

M, T e I
1*,.-"'{2!;?2]!2 F(26v1 — 262)2

= M, = !
2441 — §2

Resonant peak in frequency response corresponds to the peak overshoot in the time domain
transient response for certain values of damping ratio 66. So, the resonant peak and peak

overshoot are correlated to each other.

Bandwidth

It is the range of frequencies over which, the magnitude of T(jw) drops to 70.7% from its zero
frequency value.

At w=0, the value of u will be zero.

Substitute, u=0 in M.

M= = =1

1H,.--“'{1 — 02)2 4 (24(0))?

Therefore, the magnitude of T(jw) is one at w=0

At 3-dB frequency, the magnitude of T(jw) will be 70.7% of magnitude of T(jw)) at w=0
e, atw=wg, M = 0.707(1) = ﬁ

= M= 1_: !
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Let,uf:a:
_ 2 2
=2=(1—2)" 4+ (2d)°z

= a2+ (462 —2)z2—1=0

—(46% — 2) + /(462 — 2)2 +-4
2

=T =

Consider only the positive value of =,

z=1-2§+ 1?,.-“'{259 —1)? 41

—z=1-20+ y.-“'{z — 45% 4 45%)

v
o2

Substitute, @ = fu,f =

w? /
=128+ /(2 — 46 + 46Y)
W v

= W = wp \f.-"lll 20 4 /(2 - 40 + 45%)

Bandwidth wb in the frequency response is inversely proportional to the rise time tr in the time
domain transient response.

Bode plots

The Bode plot or the Bode diagram consists of two plots -

¢ Magnitude plot
e Phase plot

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis
represents the magnitude (linear scale) of open loop transfer function in the magnitude plot and

the phase angle (linear scale) of the open loop transfer function in the phase plot.

The magnitude of the open loop transfer function in dB is -

M = 20 log |G(jw) H (juw)|
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The phase angle of the open loop transfer function in degrees is -

Basicof Bode Plots

The following table shows the slope, magnitude and the phase angle values of the terms
present in the open loop transfer function. This data is useful while drawing the Bode plots.

Type of
term

Constant

Fero at
origin

‘n' Zzeros

at origin

Pole at

origin

‘n' poles

at origin

Simple

Zezro

¢ = LG(jw)H(jw)

G(jw)H(ju)

rig

Jew

(gea)™

|-

(o)™

1 4 jeor

Slope{dB fdec)

20

20 7z

—20

—20mn

20

Magnitude
(dB)

20log K

20 log w

20 2 logew

—20log w

—20 2 logw

0 forw
< L

=
20 logewr
forw = 1

P

Phase

angle{degrees)

0

90

90 7z

—90 or 270

—90 72 or 270
7

Dforuﬂi%

90 forw > X

r
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Simple
pole

Second
order
derivative
term

Second
order
integral
term

5]

wh| 1-

2y
o)

E |E
Ata

[
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—20

40

—40

0 forw
1
—20 logwr

1
fﬂ?"f.r.-‘};

40 log wy
forw < wy
20 log
(26wd) for
W = Wn

40 log w
forw > wy

—40 log wy
forw < wy
—20 log
(20wd) for
W= wy
—40 log w

forw > wy

DEPT. OF ECE

ﬂfﬂ‘]”'wﬁi%

—90 or 270

1
fﬂ?"l’.r.-‘};

0 forw < wy
90 forw = wy,

180 forw
> W

—0 forw
< Wy

—90 forw
= Wy

—180 forw
>ty
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Consider the open loop transfer function G(s)H(s) = K.
Magnitude M = 20 log K dB

Phase angle ¢ = 0 degrees

If K = 1, then magnitude is O dB.

If K > 1, then magnitude will be positive.

If K < 1, then magnitude will be negative.

The following figure shows the corresponding Bode plot.

M (dB)
A
i 2
20log K |-----=====mmmmmmmmmmmeee-
K=1
v log w
—20108 K }----=========mmecmmnea-
<K<
¢ (degrees)
A
0<K< o
0 >
log w

The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line itself
is the magnitude plot when the value of K is one. For the positive values of K, the horizontal line

will shift 20logK dB above the 0 dB line. For the negative values of K, the horizontal line
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will shift 20logK dB below the 0 dB line. The Zero degrees line itself is the phase plot for all the
positive values of K.

Consider the open loop transfer function G(s)H(s)=s

Magnitude M=20logw dB

Phase angle ¢=90°

At w=0.1rad/sec, the magnitude is -20 dB.

At w=1rad/sec, the magnitude is 0 dB.

At w=10 rad/sec, the magnitude is 20 dB.
The following figure shows the corresponding Bode plot.

M (dB)
A
20 +
>
0(0.1 1 10 log w
—20 -
0 (degrees)
A
90
0 3
log w

The magnitude plot is a line, which is having a slope of 20 dB/dec. This line started at
w=0.1rad/sec having a magnitude of -20 dB and it continues on the same slope. It istouching 0
dB line at w=1 rad/sec. In this case, the phase plot is 90° line.

Consider the open loop transfer function G(s)H(s)=1+st.

Magnitude M =20logv'1+w?r? dB

110



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT. OF ECE

¢ = tan" L wr degrees

Phase angle
1
W < T
For , the magnitude is 0 dB and phase angle is O degrees.
w1
For , the magnitude is 20logwt dB and phase angle is 90°.

The following figure shows the corresponding Bode plot

M (dB)
20 +
=
o log w
0 (degrees)
A
90
0 B
1 10 log @
T T

The magnitude plot is having magnitude of 0 dB upto w=1tw=1t rad/sec. From w=1t rad/sec, it
is having a slope of 20 dB/dec. In this case, the phase plot is having phase angle of 0 degrees up
to w=1t rad/sec and from here, it is having phase angle of 90°. This Bode plot is called the
asymptotic Bode plot.

As the magnitude and the phase plots are represented with straight lines, the Exact Bode plots
resemble the asymptotic Bode plots. The only difference is that the Exact Bode plots will have
simple curves instead of straight lines.
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Similarly, you can draw the Bode plots for other terms of the open loop transfer function
which are given in the table.

Rules for Construction of Bode Plots
Follow these rules while constructing a Bode plot.
e Represent the open loop transfer function in the standard time constant form.

e Substitute, s=jws=jw in the above equation.

e Find the corner frequencies and arrange them in ascending order.

o Consider the starting frequency of the Bode plot as 1/10" of the minimum corner

frequency or 0.1 rad/sec whichever is smaller value and draw the Bode plot upto 10
times maximum corner frequency.

¢ Draw the magnitude plots for each term and combine these plots properly.

Draw the phase plots for each term and combine these plots properly.

Note — The corner frequency is the frequency at which there is a change in the slope of the
magnitude plot.

Example

Consider the open loop transfer function of a closed loop control syste

10s

CEOHE) = 56519

Let us convert this open loop transfer function into standard time constant
form.

10s
2(3+1)5(5+1)
(1+%)5(1+§)

G(s)H(s) =

— G(s)H(s) =

S0, we can draw the Bode plot in semi log sheet using the rules mentioned
earlier.
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Stability Analysis using Bode Plots

From the Bode plots, we can say whether the control system is stable, marginally stable or
unstable based on the values of these parameters.

e Gain cross over frequency and phase cross over frequency
e Gain margin and phase margin
Phase Cross over Frequency
The frequency at which the phase plot is having the phase of -180° is known as phase cross over

frequency. It is denoted by wpc. The unit of phase cross over frequency is rad/sec.

Gain Cross over Frequency

The frequency at which the magnitude plot is having the magnitude of zero dBis knownas

gain cross over frequency. It is denoted by wgc. The unit of gain cross over frequency is
rad/sec.

The stability of the control system based on the relation between the phase cross over
frequency and the gain cross over frequency is listed below.

e If the phase cross over frequency wpc is greater than the gain cross over frequency wgc,
then the control system is stable.

o If the phase cross over frequency wpcis equal to the gain cross over frequency wgc,
then the control system is marginally stable.

¢ If the phase cross over frequency wpcis less than the gain cross over frequency wgc,
then the control system is unstable.

Gain Margin

Gain margin GMGM is equal to negative of the magnitude in dB at phase cross over frequency.
GM=20log(1Mpc)=20logMpc

Where, MpcMpc is the magnitude at phase cross over frequency. The unit of gain margin (GM)

is dB.

Phase Margin

The formula for phase margin PMPM is
PM=180%+¢gc

Where, ¢gc is the phase angle at gain cross over frequency. The unit of phase margin
is degrees.
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The stability of the control system based on the relation between gain margin and phase
margin is listed below.
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e If both the gain margin GM and the phase margin PM are positive, then the control
system is stable.

o If both the gain margin GM and the phase margin PM are equal to zero, then the
control system is marginally stable.

If the gain margin GM and / or the phase margin PM are/is negative, then the control
system is unstable.

Polar plots

Polar plot is a plot which can be drawn between magnitude and phase. Here, the

magnitudes are represented by normal values only.
The polar form of G(jw)H (jw) is

Gjw)H (jw) = |G(jw) H (jw)| LG (jw) H (jw)

The Polar plot is a plot, which can be drawn between the magnitude and the

phaze angle of G(jw)H(jw) by varying w from zero to co. The polar graph
sheet iz shown in the following figure.

105° 75°
120° 60°
N 7
135° 7., 45°
150° ~ 30°
-~ o
165° \ / = 15°
— I‘ r" S “ s - 1 A 'l
= ed W] ( | iy 4D O _ Yed Bl 'I g N
180° : : : o°
200 77 L B [ L x 5 | 2 3 3 S| 6| 7
195° = & S L = 345°
210° . . ' LA “77‘\'330"
%, &
225° ¢ 3150
/ E N
240° * 300°
255° S 285°
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This graph sheet consists of concentric circles and radial lines. The concentric circles and the

radial lines represent the magnitudes and phase angles respectively. These angles are

represented by positive values in anti-clock wise direction. Similarly, we can represent angles

with negative values in clockwise direction. For example, the angle 270° in anti-clock wise

direction is equal to the angle —90° in clockwise direction.

Rules for Drawing Polar Plots

Follow these rules for plotting the polar plots.

Substitute, s=jw in the open loop transfer function.

Write the expressions for magnitude and the phase of G(jw)H(jw)

Find the starting magnitude and the phase of G(jw)H(jw) by substituting w=0. So, the
polar plot starts with this magnitude and the phase angle.

Find the ending magnitude and the phase of G(jw)H(jw) by substituting w=e= So, the
polar plot ends with this magnitude and the phase angle.

Check whether the polar plot intersects the real axis, by making the imaginary term
of G(jw)H(jw) equal to zero and find the value(s) of w.

Check whether the polar plot intersects the imaginary axis, by making real term
of G(jw)H(jw) equal to zero and find the value(s) of w.

For drawing polar plot more clearly, find the magnitude and phase of G(jw)H(jw) by
considering the other value(s) of w.

Example

Consider the open loop transfer function of a closed loop control system.

e 5
Gi=)H(z) = s(s + 1) (s + 2)

Let us draw the polar plot for this contral system using the above rules,

Step 1 — Substitute, § = jw in the open loop transfer function,

5
Jw(jew + 1) (Jew + 2)

Gjw) H(jw) =

The magnitude of the open loop transfer function is

5
et View?2 + 1) (w2 + 4)

A =

The phase angle of the open loop transfer flunction is

1 i

¢ = —00Y — tan w — tan

n|E
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Frequency {rad/sec) Magnitude Phase angle{degrees)
0 0 =90 ar 270
0 0 270 ar 30

So, the polar plot starts at (e2,-90°) and ends at (0,-270°). The first and the second terms within
the brackets indicate the magnitude and phase angle respectively.

Step 3 - Based on the starting and the ending polar co-ordinates, this polar plot will intersect
the negative real axis. The phase angle corresponding to the negative real axis is -180° or 180°.
So, by equating the phase angle of the open loop transfer function to either -180° or 180°, we
will get the w value as V2.

By substituting w=Vv2 in the magnitude of the open loop transfer function, we will get M=0.83.
Therefore, the polar plot intersects the negative real axis when w=v2 and the polar coordinate
is (0.83,-180°).

So, we can draw the polar plot with the above information on the polar graph sheet.

Nyquist Plots

Nyquist plots are the continuation of polar plots for finding the stability of the closed loop
control systems by varying w from —oo to oo. That means, Nyquist plots are used to draw the

complete frequency response of the open loop transfer function.

Nyquist Stability Criterion

The Nyquist stability criterion works on the principle of argument. It states that if there are P
poles and Z zeros are enclosed by the ‘s’ plane closed path, then the corresponding
G(s)H(s)G(s)H(s) plane must encircle the origin P-ZP-Z times. So, we can write the number of

encirclements N as,
N=P-ZN=P-Z

o If the enclosed ‘s’ plane closed path contains only poles, then the direction of the
encirclement in the G(s)H(s)G(s)H(s) plane will be opposite to the direction of the
enclosed closed path in the ‘s’ plane.

o If the enclosed ‘s’ plane closed path contains only zeros, then the direction of the
encirclement in the G(s)H(s)G(s)H(s) plane will be in the same direction as that of the

enclosed closed path in the ‘s’ plane.
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Let us now apply the principle of argument to the entire right half of the ‘s’ plane by selecting

it as a closed path. This selected path is called the Nyquist contour.

We know that the closed loop control system is stable if all the poles of the closed loop transfer
function are in the left half of the ‘s’ plane. So, the poles of the closed loop transfer function are
nothing but the roots of the characteristic equation. As the order of the characteristic equation
increases, it is difficult to find the roots. So, let us correlate these roots of the characteristic
equation as follows.

e The Poles of the characteristic equation are same as that of the poles of the open loop

transfer function.

e The zeros of the characteristic equation are same as that of the poles of the closed loop

transfer function.

We know that the open loop control system is stable if there is no open loop pole in the the
right half of the ‘s’ plane.

i.e.,P=0=>N=-ZP=0=>N=-Z
We know that the closed loop control system is stable if there is no closed loop pole in the
right half of the ‘s’ plane.

i.e.,Z=0=>N=PZ=0=>N=P

Nyquist stability criterion states the number of encirclements about the critical point (1+j0)
must be equal to the poles of characteristic equation, which is nothing but the poles of the open
loop transfer function in the right half of the ‘s’ plane. The shift in origin to (1+j0) gives the

characteristic equation plane.

Rules for Drawing NyquistPlots
Follow these rules for plotting the Nyquist plots.

¢ Locate the poles and zeros of open loop transfer function G(s)H(s) in ‘s’ plane.

o Draw the polar plot by varying w from zero to infinity. If pole or zero present at s = 0,
then varying w from 0+ to infinity for drawing polar plot.

e Draw the mirror image of above polar plot for values of w ranging from —oo to zero (0~ if
any pole or zero present at s=0).

e The number of infinite radius half circles will be equal to the number of poles or zeros
at origin. The infinite radius half circle will start at the point where the mirror image of
the polar plot ends. And this infinite radius half circle will end at the point where the

polar plot starts.
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After drawing the Nyquist plot, we can find the stability of the closed loop control system using
the Nyquist stability criterion. If the critical point (-1+j0) lies outside the encirclement, then the
closed loop control system is absolutely stable.

Stability Analysis using Nyquist Plots

From the Nyquist plots, we can identify whether the control system is stable, marginally stable
or unstable based on the values of these parameters.

e Gain cross over frequency and phase cross over frequency

e Gain margin and phase margin
Phase Cross over Frequency
The frequency at which the Nyquist plot intersects the negative real axis (phase angle is 180°)
is known as the phase cross over frequency. It is denoted by wyc.
Gain Cross over Frequency
The frequency at which the Nyquist plot is having the magnitude of one is known as the gain
cross over frequency. It is denoted by wgc.

The stability of the control system based on the relation between phase cross over frequency
and gain cross over frequency is listed below.

e If the phase cross over frequency wpc is greater than the gain cross over frequency wgc,
then the control system is stable.

¢ If the phase cross over frequency wpc is equal to the gain cross over frequency wgc,
then the control system is marginally stable.

¢ If phase cross over frequency wpc is less than gain cross over frequency wgc, then the
control system is unstable.

Gain Margin
The gain margin GM is equal to the reciprocal of the magnitude of the Nyquist plot at the
phase cross over frequency.

1
M,

GM =

Where, Mpc is the magnitude in normal scale at the phase cross over frequency.

Phase Margin

The phase margin PM is equal to the sum of 180° and the phase angle at the gain cross over
frequency.
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PM=180%gc

Where, ¢gc is the phase angle at the gain cross over frequency.

The stability of the control system based on the relation between the gain margin and the
phase margin is listed below.

e If the gain margin GM is greater than one and the phase margin PM is positive, then the
control system is stable.

o If the gain margin GMs equal to one and the phase margin PM is zero degrees, then the
control system is marginally stable.

e If the gain margin GM is less than one and / or the phase margin PM is negative, then
the control system is unstable.
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